scBubbletree: computational approach for visualization of single cell RNA-seq data

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2024-09-13 DOI:10.1186/s12859-024-05927-y
Simo Kitanovski, Yingying Cao, Dimitris Ttoouli, Farnoush Farahpour, Jun Wang, Daniel Hoffmann
{"title":"scBubbletree: computational approach for visualization of single cell RNA-seq data","authors":"Simo Kitanovski, Yingying Cao, Dimitris Ttoouli, Farnoush Farahpour, Jun Wang, Daniel Hoffmann","doi":"10.1186/s12859-024-05927-y","DOIUrl":null,"url":null,"abstract":"Visualization approaches transform high-dimensional data from single cell RNA sequencing (scRNA-seq) experiments into two-dimensional plots that are used for analysis of cell relationships, and as a means of reporting biological insights. Yet, many standard approaches generate visuals that suffer from overplotting, lack of quantitative information, and distort global and local properties of biological patterns relative to the original high-dimensional space. We present scBubbletree, a new, scalable method for visualization of scRNA-seq data. The method identifies clusters of cells of similar transcriptomes and visualizes such clusters as “bubbles” at the tips of dendrograms (bubble trees), corresponding to quantitative summaries of cluster properties and relationships. scBubbletree stacks bubble trees with further cluster-associated information in a visually easily accessible way, thus facilitating quantitative assessment and biological interpretation of scRNA-seq data. We demonstrate this with large scRNA-seq data sets, including one with over 1.2 million cells. To facilitate coherent quantification and visualization of scRNA-seq data we developed the R-package scBubbletree, which is freely available as part of the Bioconductor repository at: https://bioconductor.org/packages/scBubbletree/ ","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05927-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Visualization approaches transform high-dimensional data from single cell RNA sequencing (scRNA-seq) experiments into two-dimensional plots that are used for analysis of cell relationships, and as a means of reporting biological insights. Yet, many standard approaches generate visuals that suffer from overplotting, lack of quantitative information, and distort global and local properties of biological patterns relative to the original high-dimensional space. We present scBubbletree, a new, scalable method for visualization of scRNA-seq data. The method identifies clusters of cells of similar transcriptomes and visualizes such clusters as “bubbles” at the tips of dendrograms (bubble trees), corresponding to quantitative summaries of cluster properties and relationships. scBubbletree stacks bubble trees with further cluster-associated information in a visually easily accessible way, thus facilitating quantitative assessment and biological interpretation of scRNA-seq data. We demonstrate this with large scRNA-seq data sets, including one with over 1.2 million cells. To facilitate coherent quantification and visualization of scRNA-seq data we developed the R-package scBubbletree, which is freely available as part of the Bioconductor repository at: https://bioconductor.org/packages/scBubbletree/
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
scBubbletree:单细胞 RNA-seq 数据可视化计算方法
可视化方法将单细胞 RNA 测序(scRNA-seq)实验的高维数据转化为二维图,用于分析细胞关系,并作为报告生物学见解的一种手段。然而,许多标准方法生成的视觉效果存在过度绘制、缺乏定量信息以及相对于原始高维空间的生物模式的全局和局部属性失真等问题。我们介绍的 scBubbletree 是一种新的、可扩展的 scRNA-seq 数据可视化方法。scBubbletree 将气泡树与进一步的群集相关信息堆叠在一起,以一种易于访问的视觉方式,从而促进了 scRNA-seq 数据的定量评估和生物学解释。我们用大型 scRNA-seq 数据集(包括一个拥有 120 多万个细胞的数据集)演示了这一点。为了促进 scRNA-seq 数据的连贯量化和可视化,我们开发了 R 软件包 scBubbletree,作为 Bioconductor 存储库的一部分免费提供,网址是:https://bioconductor.org/packages/scBubbletree/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Rare copy number variant analysis in case-control studies using snp array data: a scalable and automated data analysis pipeline. Mining contextually meaningful subgraphs from a vertex-attributed graph. Robust double machine learning model with application to omics data. A mapping-free natural language processing-based technique for sequence search in nanopore long-reads. Closha 2.0: a bio-workflow design system for massive genome data analysis on high performance cluster infrastructure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1