首页 > 最新文献

BMC Bioinformatics最新文献

英文 中文
YamOmics: a comprehensive data resource on yam multi-omics. 山药组学:山药多组学的综合数据资源。
IF 3.3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-02-08 DOI: 10.1186/s12859-026-06393-4
Yi Zhao, Xuteng Ye, Jun Cheng, Li Yin, Danyu Shen, Daolong Dou, Jinding Liu

Yams (Dioscorea spp.) are a highly important class of horticultural crops, serving as a staple food for millions of people in Africa and contributing significantly to food security. They are also widely cultivated in East Asia as medicinal herbs, bringing substantial economic incomes. Diverse omics data play a pivotal role in advancing yam research and breeding. However, these data are often scattered, lacking in systematic organization and analysis, which underscores the need for centralized and comprehensive data management. In view of this, we gathered extensive omics data and developed the Yam Omics Database (YamOmics; https://biotec.njau.edu.cn/yamdb). The database currently offers a vast and diverse range of omics data, covering genomic, transcriptomic and plastomic data from 41 distinct yam species, along with detailed records of genomic variants from 935 germplasms, and gene expression profiles from 191 samples. Additionally, the database features thorough annotations, encompassing aspects like genome synteny, ortholog groups, signaling pathways, gene families and protein interactions. To support yam basic biology and breeding research, it is also equipped with a suite of user-friendly online tools, including PCR primer design, CRISPR design, expression analysis, enrichment analysis, and phylogenetic inference among Dioscorea accessions tools.

山药(薯蓣属)是一类非常重要的园艺作物,是非洲数百万人的主食,对粮食安全作出了重大贡献。它们在东亚也作为药材被广泛种植,带来可观的经济收入。多样化的组学数据在推进山药研究和育种中发挥着关键作用。然而,这些数据往往是分散的,缺乏系统的组织和分析,这凸显了集中和全面的数据管理的必要性。鉴于此,我们收集了大量的组学数据,并开发了Yam组学数据库(YamOmics; https://biotec.njau.edu.cn/yamdb)。该数据库目前提供了广泛而多样的组学数据,包括41种不同山药物种的基因组、转录组学和质体学数据,以及935种种质的基因组变异的详细记录,以及191个样本的基因表达谱。此外,该数据库还具有全面的注释,包括基因组合成器、同源群、信号通路、基因家族和蛋白质相互作用等方面。为了支持山药的基础生物学和育种研究,它还配备了一套用户友好的在线工具,包括PCR引物设计、CRISPR设计、表达分析、富集分析和山药品种间的系统发育推断工具。
{"title":"YamOmics: a comprehensive data resource on yam multi-omics.","authors":"Yi Zhao, Xuteng Ye, Jun Cheng, Li Yin, Danyu Shen, Daolong Dou, Jinding Liu","doi":"10.1186/s12859-026-06393-4","DOIUrl":"https://doi.org/10.1186/s12859-026-06393-4","url":null,"abstract":"<p><p>Yams (Dioscorea spp.) are a highly important class of horticultural crops, serving as a staple food for millions of people in Africa and contributing significantly to food security. They are also widely cultivated in East Asia as medicinal herbs, bringing substantial economic incomes. Diverse omics data play a pivotal role in advancing yam research and breeding. However, these data are often scattered, lacking in systematic organization and analysis, which underscores the need for centralized and comprehensive data management. In view of this, we gathered extensive omics data and developed the Yam Omics Database (YamOmics; https://biotec.njau.edu.cn/yamdb). The database currently offers a vast and diverse range of omics data, covering genomic, transcriptomic and plastomic data from 41 distinct yam species, along with detailed records of genomic variants from 935 germplasms, and gene expression profiles from 191 samples. Additionally, the database features thorough annotations, encompassing aspects like genome synteny, ortholog groups, signaling pathways, gene families and protein interactions. To support yam basic biology and breeding research, it is also equipped with a suite of user-friendly online tools, including PCR primer design, CRISPR design, expression analysis, enrichment analysis, and phylogenetic inference among Dioscorea accessions tools.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146140965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Point cloud deformation modeling for particle selection following cryo-EM 2D classification. 点云变形建模在低温电镜二维分类后的粒子选择。
IF 3.3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-02-08 DOI: 10.1186/s12859-026-06384-5
Xuan Wang, Zhengao Mo, Fuwei Li, Fa Zhang, Xiaohua Wan

Background: Cryo-electron microscopy (cryo-EM) has emerged as a powerful technique for high-resolution structural determination of macromolecules. However, accurately classifying single-particle cryo-EM images remains challenging, especially when dealing with deformed particles. In traditional 2D classification methods, clustering algorithms are used for classification. This assumption leads to some deformed particles being misclassified in 2D images, which adversely affects downstream tasks. To address this challenge, we propose a point cloud-based deformation measurement model that integrates a Variational Autoencoder (VAE) with a heuristic point cloud matching algorithm to calculate particle deformation values.

Results: This model enables the identification and removal of particles with large deformations. Our experiments on simulated and real cryo-EM datasets, including Tobacco Mosaic Virus (TMV) and mixed capsids of MS2 virions (MS2). The model achieves robust classification (F1: 0.85-0.88) while preserving 93-95% of structural details, and can effectively filter out deformed particles after 2D classification.

Conclusion: The model identifies and removes deformed or misclassified particles to improve classification quality. It serves as a data-filtering post-processing step following 2D classification. By improving the quality of particle datasets, it enhances the reliability of subsequent analysis in cryo-EM.

背景:低温电子显微镜(cryo-EM)已经成为一种用于高分辨率大分子结构测定的强大技术。然而,准确分类单颗粒低温电镜图像仍然具有挑战性,特别是在处理变形颗粒时。在传统的二维分类方法中,采用聚类算法进行分类。这种假设导致一些变形的颗粒在二维图像中被错误分类,这对下游任务产生不利影响。为了解决这一挑战,我们提出了一种基于点云的变形测量模型,该模型集成了变分自编码器(VAE)和启发式点云匹配算法来计算颗粒变形值。结果:该模型能够识别和去除变形较大的颗粒。我们在模拟和真实的低温电镜数据集上进行了实验,包括烟草花叶病毒(TMV)和MS2病毒粒子的混合衣壳(MS2)。该模型在保留93-95%的结构细节的情况下实现了鲁棒分类(F1: 0.85-0.88),并能有效滤除二维分类后的变形颗粒。结论:该模型能够识别和去除变形或错误分类的颗粒,提高了分类质量。它作为2D分类之后的数据过滤后处理步骤。通过提高粒子数据集的质量,提高了低温电镜后续分析的可靠性。
{"title":"Point cloud deformation modeling for particle selection following cryo-EM 2D classification.","authors":"Xuan Wang, Zhengao Mo, Fuwei Li, Fa Zhang, Xiaohua Wan","doi":"10.1186/s12859-026-06384-5","DOIUrl":"https://doi.org/10.1186/s12859-026-06384-5","url":null,"abstract":"<p><strong>Background: </strong>Cryo-electron microscopy (cryo-EM) has emerged as a powerful technique for high-resolution structural determination of macromolecules. However, accurately classifying single-particle cryo-EM images remains challenging, especially when dealing with deformed particles. In traditional 2D classification methods, clustering algorithms are used for classification. This assumption leads to some deformed particles being misclassified in 2D images, which adversely affects downstream tasks. To address this challenge, we propose a point cloud-based deformation measurement model that integrates a Variational Autoencoder (VAE) with a heuristic point cloud matching algorithm to calculate particle deformation values.</p><p><strong>Results: </strong>This model enables the identification and removal of particles with large deformations. Our experiments on simulated and real cryo-EM datasets, including Tobacco Mosaic Virus (TMV) and mixed capsids of MS2 virions (MS2). The model achieves robust classification (F1: 0.85-0.88) while preserving 93-95% of structural details, and can effectively filter out deformed particles after 2D classification.</p><p><strong>Conclusion: </strong>The model identifies and removes deformed or misclassified particles to improve classification quality. It serves as a data-filtering post-processing step following 2D classification. By improving the quality of particle datasets, it enhances the reliability of subsequent analysis in cryo-EM.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146140967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and evaluation of semantically-valid negative samples integration techniques for scalable semi-automated drug repurposing prediction pipelines in rare disease research. 罕见病研究中可扩展半自动药物再利用预测管道中语义有效的阴性样本集成技术的设计和评估。
IF 3.3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-02-04 DOI: 10.1186/s12859-026-06376-5
Niccolò Bianchi, Armel E J L Lefebvre, Katherine J Wolstencroft, Marco Spruit
{"title":"Design and evaluation of semantically-valid negative samples integration techniques for scalable semi-automated drug repurposing prediction pipelines in rare disease research.","authors":"Niccolò Bianchi, Armel E J L Lefebvre, Katherine J Wolstencroft, Marco Spruit","doi":"10.1186/s12859-026-06376-5","DOIUrl":"https://doi.org/10.1186/s12859-026-06376-5","url":null,"abstract":"","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146117714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Virus variant quantification with Orthanq. 用Orthanq定量分析病毒变异。
IF 3.3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-02-04 DOI: 10.1186/s12859-026-06387-2
Hamdiye Uzuner, Felix Wiegand, Sven Schrinner, David Lähnemann, Dirk Schadendorf, Johannes Köster
{"title":"Virus variant quantification with Orthanq.","authors":"Hamdiye Uzuner, Felix Wiegand, Sven Schrinner, David Lähnemann, Dirk Schadendorf, Johannes Köster","doi":"10.1186/s12859-026-06387-2","DOIUrl":"https://doi.org/10.1186/s12859-026-06387-2","url":null,"abstract":"","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146117655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ChromAcS: an automated and flexible GUI for end-to-end reproducible ATAC-seq analysis across multiple species. ChromAcS:一个自动化和灵活的GUI,用于跨多个物种的端到端可重复的ATAC-seq分析。
IF 3.3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-02-04 DOI: 10.1186/s12859-026-06382-7
Muhaiminur Hossain, Anik Mojumder, S M Mahbubur Rashid, Abul Bashar Mir Md Khademul Islam
{"title":"ChromAcS: an automated and flexible GUI for end-to-end reproducible ATAC-seq analysis across multiple species.","authors":"Muhaiminur Hossain, Anik Mojumder, S M Mahbubur Rashid, Abul Bashar Mir Md Khademul Islam","doi":"10.1186/s12859-026-06382-7","DOIUrl":"https://doi.org/10.1186/s12859-026-06382-7","url":null,"abstract":"","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146117725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MUUMI: an R package for statistical and network-based meta-analysis for multi-omics data integration. MUUMI:一个R软件包,用于多组学数据集成的统计和基于网络的元分析。
IF 3.3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-02-03 DOI: 10.1186/s12859-026-06394-3
Simo Inkala, Michele Fratello, Giusy Del Giudice, Giorgia Migliaccio, Angela Serra, Dario Greco, Antonio Federico
{"title":"MUUMI: an R package for statistical and network-based meta-analysis for multi-omics data integration.","authors":"Simo Inkala, Michele Fratello, Giusy Del Giudice, Giorgia Migliaccio, Angela Serra, Dario Greco, Antonio Federico","doi":"10.1186/s12859-026-06394-3","DOIUrl":"https://doi.org/10.1186/s12859-026-06394-3","url":null,"abstract":"","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146112147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contrastive learning in both structure and function spaces improve drug-target interaction prediction. 结构和功能空间的对比学习提高了药物-靶标相互作用的预测。
IF 3.3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-02-02 DOI: 10.1186/s12859-026-06377-4
Yongqing Zhang, Le Chen, Hong Luo, Tianhao Li, Shuwen Xiong, Zixuan Wang, Quan Zou, Wenqian Zhang
{"title":"Contrastive learning in both structure and function spaces improve drug-target interaction prediction.","authors":"Yongqing Zhang, Le Chen, Hong Luo, Tianhao Li, Shuwen Xiong, Zixuan Wang, Quan Zou, Wenqian Zhang","doi":"10.1186/s12859-026-06377-4","DOIUrl":"https://doi.org/10.1186/s12859-026-06377-4","url":null,"abstract":"","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146103696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
piRAT: piRNA Annotation Tool for annotating, analyzing, and visualizing piRNAs. piRAT: piRNA注释工具,用于注释,分析和可视化piRNA。
IF 3.3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-31 DOI: 10.1186/s12859-026-06380-9
Dominik Robak, Guillem Ylla
{"title":"piRAT: piRNA Annotation Tool for annotating, analyzing, and visualizing piRNAs.","authors":"Dominik Robak, Guillem Ylla","doi":"10.1186/s12859-026-06380-9","DOIUrl":"https://doi.org/10.1186/s12859-026-06380-9","url":null,"abstract":"","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sample size requirements for machine learning classification of binary outcomes in bulk RNA-Seq data. 大量RNA-Seq数据中二元结果机器学习分类的样本量要求。
IF 3.3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-31 DOI: 10.1186/s12859-026-06372-9
Scott Silvey, Amy Olex, Shaojun Tang, Jinze Liu
{"title":"Sample size requirements for machine learning classification of binary outcomes in bulk RNA-Seq data.","authors":"Scott Silvey, Amy Olex, Shaojun Tang, Jinze Liu","doi":"10.1186/s12859-026-06372-9","DOIUrl":"https://doi.org/10.1186/s12859-026-06372-9","url":null,"abstract":"","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Srnc: semi-supervised learning for robust novel cell-type identification in single cell RNA sequencing data. Srnc:在单细胞RNA测序数据中稳健的新细胞类型鉴定的半监督学习。
IF 3.3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-30 DOI: 10.1186/s12859-026-06386-3
Thi Van Nguyen, Van Hoan Do, Vu-Linh Nguyen
{"title":"Srnc: semi-supervised learning for robust novel cell-type identification in single cell RNA sequencing data.","authors":"Thi Van Nguyen, Van Hoan Do, Vu-Linh Nguyen","doi":"10.1186/s12859-026-06386-3","DOIUrl":"https://doi.org/10.1186/s12859-026-06386-3","url":null,"abstract":"","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146092036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BMC Bioinformatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1