{"title":"Understanding and Modeling CMAS and Thermal Barrier Coating Interaction Under Thermal Gradients","authors":"T. Brunet, T. Archer, A. Dolmaire, M. Vilasi","doi":"10.1007/s11085-024-10299-y","DOIUrl":null,"url":null,"abstract":"<div><p>When operating at very high temperatures (starting from 1200 °C), thermal barrier coatings (TBCs) start interacting with oxide particles such as CMAS (CaO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>), found in sand or volcanic ashes. Namely, CMAS can infiltrate the TBC and tamper the thermal and mechanical properties of said TBC, leading to its deterioration. This study aimed to understand the interaction between yttria partially stabilized zirconia (YSZ) TBCs and CMAS particles under a thermal gradient. The TBC was made through an EB-PVD process. The experimental study was conducted with a laser rig. TBC samples were heated up to 1200 °C and exposed to a cylinder-shaped CAS (CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>) deposit for different durations. The study was conducted in presence of a through-thickness thermal gradient of up to 150 °C in the sample. It was observed that the infiltration is a rather quick phenomenon; while, the dissolution of the TBC and the precipitation of the crystalline phases worked on a longer timeline. Both phenomena can then be considered uncoupled under these test conditions and modeled as such. A heat transfer model was implemented as to better understand the different phenomena happening. The model was fitted to experimental data through a test-calculation dialog.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 6","pages":"1449 - 1465"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10299-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
When operating at very high temperatures (starting from 1200 °C), thermal barrier coatings (TBCs) start interacting with oxide particles such as CMAS (CaO-MgO-Al2O3-SiO2), found in sand or volcanic ashes. Namely, CMAS can infiltrate the TBC and tamper the thermal and mechanical properties of said TBC, leading to its deterioration. This study aimed to understand the interaction between yttria partially stabilized zirconia (YSZ) TBCs and CMAS particles under a thermal gradient. The TBC was made through an EB-PVD process. The experimental study was conducted with a laser rig. TBC samples were heated up to 1200 °C and exposed to a cylinder-shaped CAS (CaO-Al2O3-SiO2) deposit for different durations. The study was conducted in presence of a through-thickness thermal gradient of up to 150 °C in the sample. It was observed that the infiltration is a rather quick phenomenon; while, the dissolution of the TBC and the precipitation of the crystalline phases worked on a longer timeline. Both phenomena can then be considered uncoupled under these test conditions and modeled as such. A heat transfer model was implemented as to better understand the different phenomena happening. The model was fitted to experimental data through a test-calculation dialog.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.