Hydrogen Sulfide in Musculoskeletal Diseases: Molecular Mechanisms and Therapeutic Opportunities.

IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Antioxidants & redox signaling Pub Date : 2024-09-14 DOI:10.1089/ars.2024.0625
Ya-Fang Liu,Yan-Xia Zhang,Yi-Wen Zhu,Ao-Qi Tang,Hao-Bo Liang,Yi-Lun Yang,Yuankun Zhai,XinYing Ji,DongDong Wu
{"title":"Hydrogen Sulfide in Musculoskeletal Diseases: Molecular Mechanisms and Therapeutic Opportunities.","authors":"Ya-Fang Liu,Yan-Xia Zhang,Yi-Wen Zhu,Ao-Qi Tang,Hao-Bo Liang,Yi-Lun Yang,Yuankun Zhai,XinYing Ji,DongDong Wu","doi":"10.1089/ars.2024.0625","DOIUrl":null,"url":null,"abstract":"SIGNIFICANCE\r\nMusculoskeletal diseases seriously affect global health, but their importance is greatly underestimated. These diseases often afflict the elderly, leading to disability, paralysis, and other complications. Hydrogen sulfide (H2S) plays an important role in the occurrence and development of musculoskeletal diseases, which may have potential ther-apeutic significance for these diseases.\r\n\r\nRECENT ADVANCES\r\nRecently, it has been found that many musculoskeletal diseases, such as osteoporosis, periodontitis, muscle atrophy, muscle ischemia-reperfusion injury, mus-cle contraction under high fever, arthritis, and disc herniation, can be alleviated by sup-plementing H2S. H2S may be conducive to the development of multiple myeloma. The mechanism of H2S effect on the musculoskeletal system has been elucidated. A variety of H2S donors and nano-delivery systems provide prospects for H2S-based therapies.\r\n\r\nCRITICAL ISSUES\r\nRelated research remains at the level of cell or animal experiments, and clinical research is lacking. The role of H2S in more musculoskeletal disorders remains largely unknown. The importance of musculoskeletal diseases has not been widely con-cerned. Targeted delivery of H2S remains a challenging task.\r\n\r\nFUTURE DIRECTION\r\nDevelop therapeutic drugs for musculoskeletal diseases based on H2S and test their safety, efficacy, and tolerance. Explore the combination of current musculo-skeletal disease drugs with H2S releasing components to improve efficacy and avoid side effects. Carry out relevant clinical trials to verify the possibility of its widespread use.","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":"15 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0625","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SIGNIFICANCE Musculoskeletal diseases seriously affect global health, but their importance is greatly underestimated. These diseases often afflict the elderly, leading to disability, paralysis, and other complications. Hydrogen sulfide (H2S) plays an important role in the occurrence and development of musculoskeletal diseases, which may have potential ther-apeutic significance for these diseases. RECENT ADVANCES Recently, it has been found that many musculoskeletal diseases, such as osteoporosis, periodontitis, muscle atrophy, muscle ischemia-reperfusion injury, mus-cle contraction under high fever, arthritis, and disc herniation, can be alleviated by sup-plementing H2S. H2S may be conducive to the development of multiple myeloma. The mechanism of H2S effect on the musculoskeletal system has been elucidated. A variety of H2S donors and nano-delivery systems provide prospects for H2S-based therapies. CRITICAL ISSUES Related research remains at the level of cell or animal experiments, and clinical research is lacking. The role of H2S in more musculoskeletal disorders remains largely unknown. The importance of musculoskeletal diseases has not been widely con-cerned. Targeted delivery of H2S remains a challenging task. FUTURE DIRECTION Develop therapeutic drugs for musculoskeletal diseases based on H2S and test their safety, efficacy, and tolerance. Explore the combination of current musculo-skeletal disease drugs with H2S releasing components to improve efficacy and avoid side effects. Carry out relevant clinical trials to verify the possibility of its widespread use.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肌肉骨骼疾病中的硫化氢:分子机制与治疗机会》。
意义肌肉骨骼疾病严重影响全球健康,但其重要性却被大大低估。这些疾病通常困扰着老年人,导致残疾、瘫痪和其他并发症。硫化氢(H2S)在肌肉骨骼疾病的发生和发展过程中起着重要作用,可能对这些疾病具有潜在的治疗意义。最近,人们发现许多肌肉骨骼疾病,如骨质疏松症、牙周炎、肌肉萎缩、肌肉缺血再灌注损伤、高烧下肌肉收缩、关节炎和椎间盘突出症等,都可以通过补充 H2S 得到缓解。H2S 可能有利于多发性骨髓瘤的发展。H2S 对肌肉骨骼系统的作用机制已被阐明。各种 H2S 供体和纳米给药系统为基于 H2S 的疗法提供了前景。重大问题相关研究仍停留在细胞或动物实验层面,缺乏临床研究。H2S 在更多肌肉骨骼疾病中的作用在很大程度上仍然未知。肌肉骨骼疾病的重要性尚未得到广泛关注。未来方向开发基于 H2S 的肌肉骨骼疾病治疗药物,并测试其安全性、有效性和耐受性。探索将目前治疗肌肉骨骼疾病的药物与释放 H2S 的成分相结合,以提高疗效并避免副作用。开展相关临床试验,验证其广泛应用的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
期刊最新文献
Development of Calcium-Dependent Phospholipase A2 Inhibitors to Target Cellular Senescence and Oxidative Stress in Neurodegenerative Diseases. Myelin Lipid Alterations in Neurodegenerative Diseases: Landscape and Pathogenic Implications. Adeno-Associated Virus-Mediated Dickkopf-1 Gene Transduction Reduces Silica-Induced Oxidative Stress and Silicosis in Mouse Lung. Nrf2-Dependent Adaptation to Oxidative Stress Protects Against Progression of Diabetic Nephropathy. Suppression of CDK1/Drp1-Mediated Mitochondrial Fission Attenuates Dexamethasone-Induced Extracellular Matrix Deposition in the Trabecular Meshwork.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1