Exploring rare-earth Kitaev magnets by massive-scale computational analysis

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-09-18 DOI:10.1038/s43246-024-00634-w
Seong-Hoon Jang, Yukitoshi Motome
{"title":"Exploring rare-earth Kitaev magnets by massive-scale computational analysis","authors":"Seong-Hoon Jang, Yukitoshi Motome","doi":"10.1038/s43246-024-00634-w","DOIUrl":null,"url":null,"abstract":"The Kitaev honeycomb model plays a pivotal role in the quest for quantum spin liquids, in which fractional quasiparticles would provide applications in decoherence-free topological quantum computing. The key ingredient is the bond-dependent Ising-type interactions, dubbed the Kitaev interactions, which require strong entanglement between spin and orbital degrees of freedom. Here we investigate the identification and design of rare-earth materials displaying robust Kitaev interactions. We scrutinize all possible 4f electron configurations, which require up to 6+ million intermediate states in the perturbation processes, by developing a parallel computational program designed for massive-scale calculations. Our analysis reveals a predominant interplay between the isotropic Heisenberg J and anisotropic Kitaev K interactions across all realizations of the Kramers doublets. Remarkably, instances featuring 4f3 and 4f11 configurations showcase the prevalence of K over J, presenting unexpected prospects for exploring the Kitaev quantum spin liquids in compounds, including Nd3+ and Er3+, respectively. Kitaev magnets are interesting as they can host quantum spin liquid phases and fractional quasiparticles for decoherence-free topological quantum computing. Here, a parallel computational program explores all possible 4f electron configurations of rare-earth Kitaev materials, identifying those configurations, such as 4f3 and 4f11 in Nd3+ and Er3+ compounds, where anisotropic Kitaev interactions prevail over isotropic Heisenberg exchange.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-8"},"PeriodicalIF":7.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00634-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00634-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Kitaev honeycomb model plays a pivotal role in the quest for quantum spin liquids, in which fractional quasiparticles would provide applications in decoherence-free topological quantum computing. The key ingredient is the bond-dependent Ising-type interactions, dubbed the Kitaev interactions, which require strong entanglement between spin and orbital degrees of freedom. Here we investigate the identification and design of rare-earth materials displaying robust Kitaev interactions. We scrutinize all possible 4f electron configurations, which require up to 6+ million intermediate states in the perturbation processes, by developing a parallel computational program designed for massive-scale calculations. Our analysis reveals a predominant interplay between the isotropic Heisenberg J and anisotropic Kitaev K interactions across all realizations of the Kramers doublets. Remarkably, instances featuring 4f3 and 4f11 configurations showcase the prevalence of K over J, presenting unexpected prospects for exploring the Kitaev quantum spin liquids in compounds, including Nd3+ and Er3+, respectively. Kitaev magnets are interesting as they can host quantum spin liquid phases and fractional quasiparticles for decoherence-free topological quantum computing. Here, a parallel computational program explores all possible 4f electron configurations of rare-earth Kitaev materials, identifying those configurations, such as 4f3 and 4f11 in Nd3+ and Er3+ compounds, where anisotropic Kitaev interactions prevail over isotropic Heisenberg exchange.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过大规模计算分析探索稀土基塔耶夫磁体
基塔耶夫蜂巢模型在探索量子自旋液体的过程中起着关键作用,其中的分数准粒子将在无退相干拓扑量子计算中得到应用。其中的关键因素是依赖于键的伊辛型相互作用,即基塔耶夫相互作用,它需要自旋和轨道自由度之间的强纠缠。在这里,我们研究了如何识别和设计具有强大基塔耶夫相互作用的稀土材料。我们通过开发一个专为大规模计算而设计的并行计算程序,仔细研究了所有可能的 4f 电子构型,这在扰动过程中需要多达 600 多万个中间状态。我们的分析揭示了各向同性的海森堡 J 相互作用和各向异性的基塔耶夫 K 相互作用在克拉默二重性的所有实现中的主要相互作用。值得注意的是,以 4f3 和 4f11 构型为特征的实例展示了 K 相对于 J 的普遍性,为探索包括 Nd3+ 和 Er3+ 在内的化合物中的基塔耶夫量子自旋液体带来了意想不到的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Device-assisted strategies for drug delivery across the blood-brain barrier to treat glioblastoma. Discovery of giant unit-cell super-structure in the infinite-layer nickelate PrNiO2+x. Regular red-green-blue InGaN quantum wells with In content up to 40% grown on InGaN nanopyramids Grain boundary cracks patching and defect dual passivation with ammonium formate for high-efficiency triple-cation perovskite solar cells Nanosized caltrops enable selective capture and directional maneuvering of water droplets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1