Proportional-derivative control and motion stability analysis of a 16-pole legs rotor-active magnetic bearings system

IF 2.3 3区 工程技术 Q2 ACOUSTICS Journal of Vibration and Control Pub Date : 2024-09-17 DOI:10.1177/10775463241276712
Yigen Ren, Wensai Ma
{"title":"Proportional-derivative control and motion stability analysis of a 16-pole legs rotor-active magnetic bearings system","authors":"Yigen Ren, Wensai Ma","doi":"10.1177/10775463241276712","DOIUrl":null,"url":null,"abstract":"This paper analyzes the motion stability of a 16-pole rotor-active magnetic bearings (rotor-AMB) system and investigates the complex vibrations under a proportional-derivative (PD) controller. First, electromagnetic theory and Newton’s second law are applied to derive the two-degree-of-freedom differential governing equations for the 16-pole rotor-AMB system, incorporating the PD control terms. The resulting differential equations include parametrically excited, quadratic nonlinear, and cubic nonlinear terms. Subsequently, the multiple time scales perturbation analysis method is performed on the obtained governing equations, yielding four-dimensional averaged equations in both Cartesian and polar coordinates. Finally, numerical simulations including the amplitude–frequency response characteristics, motion trajectories, energy–amplitude relationships, as well as bifurcation and chaotic motion of the system are studied. The results indicate that the PD controller affects the softening and hardening spring characteristics of the system and has significant control effects on the system’s amplitude, energy, and stability. Additionally, increasing the differential gain coefficient [Formula: see text] can change the system’s motion from chaotic to periodic.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"103 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241276712","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes the motion stability of a 16-pole rotor-active magnetic bearings (rotor-AMB) system and investigates the complex vibrations under a proportional-derivative (PD) controller. First, electromagnetic theory and Newton’s second law are applied to derive the two-degree-of-freedom differential governing equations for the 16-pole rotor-AMB system, incorporating the PD control terms. The resulting differential equations include parametrically excited, quadratic nonlinear, and cubic nonlinear terms. Subsequently, the multiple time scales perturbation analysis method is performed on the obtained governing equations, yielding four-dimensional averaged equations in both Cartesian and polar coordinates. Finally, numerical simulations including the amplitude–frequency response characteristics, motion trajectories, energy–amplitude relationships, as well as bifurcation and chaotic motion of the system are studied. The results indicate that the PD controller affects the softening and hardening spring characteristics of the system and has significant control effects on the system’s amplitude, energy, and stability. Additionally, increasing the differential gain coefficient [Formula: see text] can change the system’s motion from chaotic to periodic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
16 极腿转子主动磁轴承系统的比例-衍生控制和运动稳定性分析
本文分析了 16 极转子-有源磁悬浮轴承(转子-AMB)系统的运动稳定性,并研究了比例-派生(PD)控制器下的复杂振动。首先,应用电磁理论和牛顿第二定律推导出 16 极转子-AMB 系统的二自由度微分治理方程,其中包含比例-衍生控制项。得出的微分方程包括参数激励、二次非线性和三次非线性项。随后,对所得到的控制方程进行了多时间尺度扰动分析方法,得到了直角坐标和极坐标下的四维平均方程。最后,对系统的幅频响应特性、运动轨迹、能量-振幅关系以及分岔和混沌运动进行了数值模拟研究。结果表明,PD 控制器会影响系统的软化和硬化弹簧特性,并对系统的振幅、能量和稳定性产生显著的控制效果。此外,增大微分增益系数[计算公式:见正文]可以使系统的运动从混沌运动变为周期运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Vibration and Control
Journal of Vibration and Control 工程技术-工程:机械
CiteScore
5.20
自引率
17.90%
发文量
336
审稿时长
6 months
期刊介绍: The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.
期刊最新文献
Finite element formulation for free vibration of the functionally graded curved nonlocal nanobeam resting on nonlocal elastic foundation Multi-objective optimization of inerter-based building mass dampers A low-complexity highly accurate sound source localization algorithm based on sound sensor arrays Tailored for vehicle horn: A novel sound source capture method A novel optimal resonance band selection method for wheelset-bearing fault diagnosis based on tunable-Q wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1