Adaptive robust control of the PMSM servo system with servo and performance constraints

IF 2.3 3区 工程技术 Q2 ACOUSTICS Journal of Vibration and Control Pub Date : 2024-09-14 DOI:10.1177/10775463241278003
Xiaoli Liu, Shengchao Zhen, Faliang Wang, Ming Li
{"title":"Adaptive robust control of the PMSM servo system with servo and performance constraints","authors":"Xiaoli Liu, Shengchao Zhen, Faliang Wang, Ming Li","doi":"10.1177/10775463241278003","DOIUrl":null,"url":null,"abstract":"This paper presents a prescribed performance control scheme for an uncertain permanent magnet synchronous motor (PMSM) servo system. First, the position-tracking control goals are reformulated as servo constraints, while the prescribed tracking error performances are defined as performance constraints. Second, a modified prescribed performance function (PPF) is proposed to ensure the prescribed tracking performance, while the knowledge of the initial tracking error is unnecessary. Then, the new servo constraints are formulated by introducing the state transformation technique to incorporate the tracking error performance constraints into the servo constraints. Third, an adaptive robust constraint-following control (ARCFC) is presented to render the new servo constraints to be satisfied for the transformed system. Fourth, it is proved that the proposed ARCFC can ensure the position tracking error converges and remains in a preset bounded range. Finally, the simulation and experimental verification of the developed ARCFC are conducted.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"7 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241278003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a prescribed performance control scheme for an uncertain permanent magnet synchronous motor (PMSM) servo system. First, the position-tracking control goals are reformulated as servo constraints, while the prescribed tracking error performances are defined as performance constraints. Second, a modified prescribed performance function (PPF) is proposed to ensure the prescribed tracking performance, while the knowledge of the initial tracking error is unnecessary. Then, the new servo constraints are formulated by introducing the state transformation technique to incorporate the tracking error performance constraints into the servo constraints. Third, an adaptive robust constraint-following control (ARCFC) is presented to render the new servo constraints to be satisfied for the transformed system. Fourth, it is proved that the proposed ARCFC can ensure the position tracking error converges and remains in a preset bounded range. Finally, the simulation and experimental verification of the developed ARCFC are conducted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有伺服和性能约束的 PMSM 伺服系统的自适应鲁棒控制
本文提出了一种针对不确定永磁同步电机(PMSM)伺服系统的规定性能控制方案。首先,位置跟踪控制目标被重新表述为伺服约束,而规定的跟踪误差性能被定义为性能约束。其次,提出了修改后的规定性能函数(PPF),以确保规定的跟踪性能,而无需了解初始跟踪误差。然后,通过引入状态变换技术,将跟踪误差性能约束纳入伺服约束,从而制定出新的伺服约束。第三,提出了一种自适应鲁棒约束跟踪控制(ARCFC),使变换后的系统满足新的伺服约束。第四,证明所提出的 ARCFC 可以确保位置跟踪误差收敛并保持在预设的约束范围内。最后,对所开发的 ARCFC 进行了仿真和实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Vibration and Control
Journal of Vibration and Control 工程技术-工程:机械
CiteScore
5.20
自引率
17.90%
发文量
336
审稿时长
6 months
期刊介绍: The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.
期刊最新文献
Finite element formulation for free vibration of the functionally graded curved nonlocal nanobeam resting on nonlocal elastic foundation Multi-objective optimization of inerter-based building mass dampers A low-complexity highly accurate sound source localization algorithm based on sound sensor arrays Tailored for vehicle horn: A novel sound source capture method A novel optimal resonance band selection method for wheelset-bearing fault diagnosis based on tunable-Q wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1