Enhanced Spectrally Selective Terahertz Detection in a Photo-Thermoelectric Graphene Detector With Dual Nano-Grating Gates

IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Quantum Electronics Pub Date : 2024-09-18 DOI:10.1109/JQE.2024.3462953
Faramarz Alihosseini;Hesam Zandi
{"title":"Enhanced Spectrally Selective Terahertz Detection in a Photo-Thermoelectric Graphene Detector With Dual Nano-Grating Gates","authors":"Faramarz Alihosseini;Hesam Zandi","doi":"10.1109/JQE.2024.3462953","DOIUrl":null,"url":null,"abstract":"We introduce a high-performance terahertz detector based on the photo-thermoelectric effect (PTE) in graphene. Our study outlines a novel approach to enhance terahertz detection through a photodetector that employs a hybrid structure. This structure combines the localized surface plasmon resonance of dual grating gates with the resonant modes of a Fabry-Perot cavity configuration, facilitating a strong interaction between terahertz light and the active graphene layer, thereby improving light absorption. Our numerical investigation reveals frequency selectivity within the terahertz absorptance spectrum for incident waves with transverse magnetic polarization, leading to near-perfect absorptance of graphene. This substantial absorption creates an amplified thermal gradient across the graphene channel due to localized heat generation from terahertz wave absorption. The detector’s absorption characteristics can be adjusted by altering geometrical parameters and tuning two gate voltages. Furthermore, incorporating dual grating gates to create a pn-junction leads to a non-uniform Seebeck coefficient along the channel, enhancing the generated voltage. At a resonant frequency of 1.6 THz, the detector demonstrates a responsivity of 1.26 V/W and a noise-equivalent power (NEP) of \n<inline-formula> <tex-math>$5.2 \\mathrm {nW}/\\sqrt {\\mathrm {Hz}}$ </tex-math></inline-formula>\n at room temperature, under biasing the two grating gates with the low voltages of ±0.2 V.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-8"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10683709/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a high-performance terahertz detector based on the photo-thermoelectric effect (PTE) in graphene. Our study outlines a novel approach to enhance terahertz detection through a photodetector that employs a hybrid structure. This structure combines the localized surface plasmon resonance of dual grating gates with the resonant modes of a Fabry-Perot cavity configuration, facilitating a strong interaction between terahertz light and the active graphene layer, thereby improving light absorption. Our numerical investigation reveals frequency selectivity within the terahertz absorptance spectrum for incident waves with transverse magnetic polarization, leading to near-perfect absorptance of graphene. This substantial absorption creates an amplified thermal gradient across the graphene channel due to localized heat generation from terahertz wave absorption. The detector’s absorption characteristics can be adjusted by altering geometrical parameters and tuning two gate voltages. Furthermore, incorporating dual grating gates to create a pn-junction leads to a non-uniform Seebeck coefficient along the channel, enhancing the generated voltage. At a resonant frequency of 1.6 THz, the detector demonstrates a responsivity of 1.26 V/W and a noise-equivalent power (NEP) of $5.2 \mathrm {nW}/\sqrt {\mathrm {Hz}}$ at room temperature, under biasing the two grating gates with the low voltages of ±0.2 V.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带双纳米光栅的光热电石墨烯探测器的增强型光谱选择性太赫兹探测功能
我们介绍了一种基于石墨烯光热电效应(PTE)的高性能太赫兹探测器。我们的研究概述了一种通过采用混合结构的光电探测器增强太赫兹检测的新方法。这种结构将双光栅栅极的局部表面等离子体共振与法布里-珀罗腔配置的共振模式相结合,促进了太赫兹光与活性石墨烯层之间的强烈相互作用,从而改善了光吸收。我们的数值研究揭示了太赫兹吸收光谱对横向磁极化入射波的频率选择性,从而使石墨烯具有近乎完美的吸收能力。由于太赫兹波吸收产生的局部热量,这种大量吸收在石墨烯通道上形成了一个放大的热梯度。探测器的吸收特性可以通过改变几何参数和调整两个栅极电压来调整。此外,采用双光栅栅极创建 pn 结会导致通道沿线的塞贝克系数不均匀,从而提高产生的电压。在 1.6 太赫兹的谐振频率下,该探测器在室温条件下,在两个光栅栅极±0.2 V 的低电压偏置下,响应率为 1.26 V/W,噪声等效功率(NEP)为 5.2 \mathrm {nW}/\sqrt {\mathrm {Hz}}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Quantum Electronics
IEEE Journal of Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.70
自引率
4.00%
发文量
99
审稿时长
3.0 months
期刊介绍: The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.
期刊最新文献
A Nanoplasmonic Directional Coupler Utilizing a Backed Conductor on Dielectric Substrate With Finite Width Intensity and Degree of Coherence of Vortex Beams in Atmospheric Turbulence Influences of Thermal Effect on the Performance of FMCW Signal Generated by Current-Modulated DFB-LDs Numerical Modeling for 250 nm DUV LEDs With Discrete p-type Functional Layers to Manage Both Carrier and Photon Transport C-Band Directly Modulated Lasers With Tunable Photon–Photon Resonance in InP Membrane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1