Ali Arslan, Giovanni Fantuzzi, John Craske, Andrew Wynn
{"title":"Internal heating profiles for which downward conduction is impossible","authors":"Ali Arslan, Giovanni Fantuzzi, John Craske, Andrew Wynn","doi":"10.1017/jfm.2024.590","DOIUrl":null,"url":null,"abstract":"We consider an internally heated fluid between parallel plates with fixed thermal fluxes. For a large class of heat sources that vary in the direction of gravity, we prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline1.png\"/> <jats:tex-math>$\\smash { \\smash {{\\langle {\\delta T} \\rangle _h}} } \\geq \\sigma R^{-1/3} - \\mu$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline2.png\"/> <jats:tex-math>$\\smash { \\smash {{\\langle {\\delta T} \\rangle _h}} }$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the average temperature difference between the bottom and top plates, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline3.png\"/> <jats:tex-math>$R$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a ‘flux’ Rayleigh number and the constants <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline4.png\"/> <jats:tex-math>$\\sigma,\\mu >0$</jats:tex-math> </jats:alternatives> </jats:inline-formula> depend on the geometric properties of the internal heating. This result implies that mean downward conduction (for which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline5.png\"/> <jats:tex-math>$\\smash { \\smash {{\\langle {\\delta T} \\rangle _h}} }< 0$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) is impossible for a range of Rayleigh numbers smaller than a critical value <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline6.png\"/> <jats:tex-math>$R_0:=(\\sigma /\\mu )^{3}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The bound demonstrates that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline7.png\"/> <jats:tex-math>$R_0$</jats:tex-math> </jats:alternatives> </jats:inline-formula> depends on the heating distribution and can be made arbitrarily large by concentrating the heating near the bottom plate. However, for any given fixed heating profile of the class we consider, the corresponding value of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline8.png\"/> <jats:tex-math>$R_0$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is always finite. This points to a fundamental difference between internally heated convection and its limiting case of Rayleigh–Bénard convection with fixed-flux boundary conditions, for which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline9.png\"/> <jats:tex-math>$\\smash {{\\langle {\\delta T} \\rangle _h}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is known to be positive for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline10.png\"/> <jats:tex-math>$R$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"16 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.590","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider an internally heated fluid between parallel plates with fixed thermal fluxes. For a large class of heat sources that vary in the direction of gravity, we prove that $\smash { \smash {{\langle {\delta T} \rangle _h}} } \geq \sigma R^{-1/3} - \mu$, where $\smash { \smash {{\langle {\delta T} \rangle _h}} }$ is the average temperature difference between the bottom and top plates, $R$ is a ‘flux’ Rayleigh number and the constants $\sigma,\mu >0$ depend on the geometric properties of the internal heating. This result implies that mean downward conduction (for which $\smash { \smash {{\langle {\delta T} \rangle _h}} }< 0$) is impossible for a range of Rayleigh numbers smaller than a critical value $R_0:=(\sigma /\mu )^{3}$. The bound demonstrates that $R_0$ depends on the heating distribution and can be made arbitrarily large by concentrating the heating near the bottom plate. However, for any given fixed heating profile of the class we consider, the corresponding value of $R_0$ is always finite. This points to a fundamental difference between internally heated convection and its limiting case of Rayleigh–Bénard convection with fixed-flux boundary conditions, for which $\smash {{\langle {\delta T} \rangle _h}}$ is known to be positive for all $R$.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.