Relative dispersion in free-surface turbulence

IF 3.6 2区 工程技术 Q1 MECHANICS Journal of Fluid Mechanics Pub Date : 2024-09-13 DOI:10.1017/jfm.2024.637
Yaxing Li, Yifan Wang, Yinghe Qi, Filippo Coletti
{"title":"Relative dispersion in free-surface turbulence","authors":"Yaxing Li, Yifan Wang, Yinghe Qi, Filippo Coletti","doi":"10.1017/jfm.2024.637","DOIUrl":null,"url":null,"abstract":"We report on an experimental study in which Lagrangian tracking is applied to millions of microscopic particles floating on the free surface of turbulent water. We leverage a large jet-stirred zero-mean-flow apparatus, where the Reynolds number is sufficiently high for an inertial range to emerge while the surface deformation remains minimal. Two-point statistics reveal specific features of the flow, deviating from the classic description derived for incompressible turbulence. The magnitude of the relative velocity is strongly intermittent, especially at small separations, leading to anomalous scaling of the second-order structure functions in the dissipative range. This is driven by the divergent component of the flow, leading to fast approaching/separation rates of nearby particles. The Lagrangian relative velocity shows strong persistence of the initial state, such that the ballistic pair separation extends to the inertial range of time delays. Based on these observations, we propose a classification of particle pairs based on their initial separation rate. When this is much smaller than the relative velocity prescribed by inertial scaling (which is the case for the majority of the observed particle pairs), the relative velocity transitions to a diffusive growth and the Richardson–Obukhov super-diffusive dispersion is recovered.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"16 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.637","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We report on an experimental study in which Lagrangian tracking is applied to millions of microscopic particles floating on the free surface of turbulent water. We leverage a large jet-stirred zero-mean-flow apparatus, where the Reynolds number is sufficiently high for an inertial range to emerge while the surface deformation remains minimal. Two-point statistics reveal specific features of the flow, deviating from the classic description derived for incompressible turbulence. The magnitude of the relative velocity is strongly intermittent, especially at small separations, leading to anomalous scaling of the second-order structure functions in the dissipative range. This is driven by the divergent component of the flow, leading to fast approaching/separation rates of nearby particles. The Lagrangian relative velocity shows strong persistence of the initial state, such that the ballistic pair separation extends to the inertial range of time delays. Based on these observations, we propose a classification of particle pairs based on their initial separation rate. When this is much smaller than the relative velocity prescribed by inertial scaling (which is the case for the majority of the observed particle pairs), the relative velocity transitions to a diffusive growth and the Richardson–Obukhov super-diffusive dispersion is recovered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自由表面湍流中的相对弥散
我们报告了一项实验研究,该研究将拉格朗日跟踪技术应用于漂浮在湍流水自由表面上的数百万个微观粒子。我们利用了一个大型喷射搅拌零均值流装置,在该装置中,雷诺数足够高,可以出现惯性范围,而表面变形仍然很小。两点统计揭示了流动的具体特征,偏离了不可压缩湍流的经典描述。相对速度的大小具有很强的间歇性,特别是在小的分离范围内,这导致二阶结构函数在耗散范围内的异常缩放。这是由流动的发散成分驱动的,导致附近粒子的快速接近/分离率。拉格朗日相对速度显示出初始状态的强烈持久性,从而使弹道对分离延伸到时间延迟的惯性范围。根据这些观察结果,我们提出了一种基于粒子对初始分离率的粒子对分类方法。当相对速度远小于惯性缩放所规定的相对速度时(大多数观测到的粒子对都是这种情况),相对速度会过渡到扩散增长,并恢复理查森-奥布霍夫超扩散色散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
期刊最新文献
Flagellum Pumping Efficiency in Shear-Thinning Viscoelastic Fluids. Particle chirality does not matter in the large-scale features of strong turbulence. Parametric oscillations of the sessile drop Detachment of leading-edge vortex enhances wake capture force production Self-similarity and the direct (enstrophy) cascade in forced two-dimensional fluid turbulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1