{"title":"Multiple stable postures of a falling object in fluids","authors":"Shuyue Sun, Xinliang Tian, Yakun Zhao, Xing Chen, Binrong Wen, Xiantao Zhang, Xin Li","doi":"10.1017/jfm.2024.557","DOIUrl":null,"url":null,"abstract":"We present evidence revealing that an object with specific properties can exhibit multiple stable falling postures at low Reynolds numbers. By scrutinizing the force equilibrium relationship of a fixed object at various attack angles and Reynolds numbers, we introduce a methodology that can obtain the stable falling postures of the object. This method saves computational resources and more intuitively presents the results in the full parameter domain. Our findings are substantiated by free-fall tests conducted through both physical experiments and numerical simulations, which validate the existence of multiple stable solutions in accordance with the interpolation results obtained with fixed objects. Additionally, we quantify the abundance and distribution patterns of stable falling postures for a diverse range of representative shapes. This discovery highlights the existence of multiple stable solutions that are universally present across objects of different shapes. The implications of this research extend to the design, stability control and trajectory prediction of all free and controlled flights in both air and water.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"8 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.557","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present evidence revealing that an object with specific properties can exhibit multiple stable falling postures at low Reynolds numbers. By scrutinizing the force equilibrium relationship of a fixed object at various attack angles and Reynolds numbers, we introduce a methodology that can obtain the stable falling postures of the object. This method saves computational resources and more intuitively presents the results in the full parameter domain. Our findings are substantiated by free-fall tests conducted through both physical experiments and numerical simulations, which validate the existence of multiple stable solutions in accordance with the interpolation results obtained with fixed objects. Additionally, we quantify the abundance and distribution patterns of stable falling postures for a diverse range of representative shapes. This discovery highlights the existence of multiple stable solutions that are universally present across objects of different shapes. The implications of this research extend to the design, stability control and trajectory prediction of all free and controlled flights in both air and water.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.