Evaluating residual stresses in metal additive manufacturing: a comprehensive review of detection methods, impact, and mitigation strategies

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2024-09-14 DOI:10.1007/s12289-024-01855-7
Mumtaz Rizwee, Deepak Kumar
{"title":"Evaluating residual stresses in metal additive manufacturing: a comprehensive review of detection methods, impact, and mitigation strategies","authors":"Mumtaz Rizwee,&nbsp;Deepak Kumar","doi":"10.1007/s12289-024-01855-7","DOIUrl":null,"url":null,"abstract":"<div><p>The metal additive manufacturing (MAM) process has most employed methods to build complex geometry and lightweight 3-dimensional (3-D) parts directly from a computerized solid model. Distortion of the printed part is a highly significant concern within the MAM process. This issue is because of the heating and cooling effect of printing process that could accumulate residual stress (RS) during part building up. The aim of the literature work is to present various methodologies for measuring RS in MAM components and to furnish a brief summary of recent developments in the domain. These details aid scholars in the discernment of suitable techniques, namely destructive, semi-destructive, or non-destructive, contingent on their particular applications and the accessibility of these methods. Moreover, it facilitates the explication of their formation mechanisms, effectiveness of process parameters, prediction, and control techniques. The effect of RS on the mechanical characteristics of printed parts is analyzed and presented. Additionally, common defects incorporated into RS are discussed. Moreover, this review article discusses about the future challenges and opportunities in the RS analysis of MAM parts.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-024-01855-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The metal additive manufacturing (MAM) process has most employed methods to build complex geometry and lightweight 3-dimensional (3-D) parts directly from a computerized solid model. Distortion of the printed part is a highly significant concern within the MAM process. This issue is because of the heating and cooling effect of printing process that could accumulate residual stress (RS) during part building up. The aim of the literature work is to present various methodologies for measuring RS in MAM components and to furnish a brief summary of recent developments in the domain. These details aid scholars in the discernment of suitable techniques, namely destructive, semi-destructive, or non-destructive, contingent on their particular applications and the accessibility of these methods. Moreover, it facilitates the explication of their formation mechanisms, effectiveness of process parameters, prediction, and control techniques. The effect of RS on the mechanical characteristics of printed parts is analyzed and presented. Additionally, common defects incorporated into RS are discussed. Moreover, this review article discusses about the future challenges and opportunities in the RS analysis of MAM parts.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估金属增材制造中的残余应力:检测方法、影响和缓解策略综合评述
金属增材制造(MAM)工艺最常用的方法是直接从计算机实体模型中制造几何形状复杂、重量轻的三维(3-D)零件。在 MAM 工艺中,打印部件的变形是一个非常重要的问题。造成这一问题的原因是打印过程中的加热和冷却效应会在零件成型过程中积累残余应力(RS)。本文献旨在介绍测量 MAM 部件 RS 的各种方法,并简要概述该领域的最新发展。这些详细信息有助于学者们根据其特定应用和这些方法的可及性选择合适的技术,即破坏性、半破坏性或非破坏性技术。此外,它还有助于阐述其形成机制、工艺参数的有效性、预测和控制技术。该书分析并介绍了 RS 对印刷部件机械特性的影响。此外,还讨论了 RS 中常见的缺陷。此外,这篇综述文章还讨论了 MAM 零件 RS 分析的未来挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
The evolution of thermal cycle, microstructures and mechanical properties of 6061 – T6 aluminum alloy thick plate Bobbin tool friction stir welded Generalisation of the hydrodynamics model method for hot and cold strip rolling application UNIMAT: An enhanced forming simulation model of prepreg woven fabrics, with application to process optimization for wrinkle mitigation Optimisation of interlayer temperature in wire-arc additive manufacturing process using NURBS-based metamodel Accurate real-time modeling for multiple-blow forging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1