Devanshi A. Nayak, Abigail L. Sedlacek, Anthony R. Cillo, Simon C. Watkins, Robert J. Binder
{"title":"CD91 and its ligand gp96 confer cross-priming capabilities to multiple APCs during immune responses to nascent, emerging tumors","authors":"Devanshi A. Nayak, Abigail L. Sedlacek, Anthony R. Cillo, Simon C. Watkins, Robert J. Binder","doi":"10.1158/2326-6066.cir-24-0326","DOIUrl":null,"url":null,"abstract":"During cancer immunosurveillance, dendritic cells (DCs) play a central role in orchestrating T-cell responses against emerging tumors. Capture of miniscule amounts of antigen along with tumor-initiated costimulatory signals can drive maturation of DCs. Expression of CD91 on DCs is essential in cross-priming of T-cell responses in the context of nascent tumors. Multiple DC and macrophage subsets express CD91 and engage tumor-derived gp96 to initiate antitumor immune responses, yet the specific CD91+ antigen-presenting cells (APCs) that are required for T-cell cross-priming during cancer immunosurveillance are unknown. In this study, we determined that CD91 expression on type 1 conventional DCs (cDC1) is necessary for cancer immunosurveillance. Specifically, CD91-expressing cDC1 were found to capture the CD91 ligand gp96 from tumors and, upon migration to the lymph nodes, distribute gp96 among lymph-node resident APCs. However, cDC1 that captured tumor-derived gp96 only provided early tumor control, while sustained and long-term tumor rejection was bestowed to the host by other gp96+ cross-priming DCs. We further found that the CD91-induced transcriptome in APCs promoted cross-priming of T-cell responses while downregulating immune regulatory pathways. Our results show an elaborate and synchronized division of labor of APCs in the successful elimination of cancer cells via CD91. We predict that the specialized functions of APC subsets can be harnessed for immunotherapy of disease.","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":"202 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.cir-24-0326","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During cancer immunosurveillance, dendritic cells (DCs) play a central role in orchestrating T-cell responses against emerging tumors. Capture of miniscule amounts of antigen along with tumor-initiated costimulatory signals can drive maturation of DCs. Expression of CD91 on DCs is essential in cross-priming of T-cell responses in the context of nascent tumors. Multiple DC and macrophage subsets express CD91 and engage tumor-derived gp96 to initiate antitumor immune responses, yet the specific CD91+ antigen-presenting cells (APCs) that are required for T-cell cross-priming during cancer immunosurveillance are unknown. In this study, we determined that CD91 expression on type 1 conventional DCs (cDC1) is necessary for cancer immunosurveillance. Specifically, CD91-expressing cDC1 were found to capture the CD91 ligand gp96 from tumors and, upon migration to the lymph nodes, distribute gp96 among lymph-node resident APCs. However, cDC1 that captured tumor-derived gp96 only provided early tumor control, while sustained and long-term tumor rejection was bestowed to the host by other gp96+ cross-priming DCs. We further found that the CD91-induced transcriptome in APCs promoted cross-priming of T-cell responses while downregulating immune regulatory pathways. Our results show an elaborate and synchronized division of labor of APCs in the successful elimination of cancer cells via CD91. We predict that the specialized functions of APC subsets can be harnessed for immunotherapy of disease.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.