{"title":"Logarithmically Enhanced Area-Laws for Fermions in Vanishing Magnetic Fields in Dimension Two","authors":"Paul Pfeiffer, Wolfgang Spitzer","doi":"10.1007/s00020-024-02778-3","DOIUrl":null,"url":null,"abstract":"<p>We consider fermionic ground states of the Landau Hamiltonian, <span>\\(H_B\\)</span>, in a constant magnetic field of strength <span>\\(B>0\\)</span> in <span>\\({\\mathbb {R}}^2\\)</span> at some fixed Fermi energy <span>\\(\\mu >0\\)</span>, described by the Fermi projection <span>\\(P_B:=1(H_B\\le \\mu )\\)</span>. For some fixed bounded domain <span>\\(\\Lambda \\subset {\\mathbb {R}}^2\\)</span> with boundary set <span>\\(\\partial \\Lambda \\)</span> and an <span>\\(L>0\\)</span> we restrict these ground states spatially to the scaled domain <span>\\(L \\Lambda \\)</span> and denote the corresponding localised Fermi projection by <span>\\(P_B(L\\Lambda )\\)</span>. Then we study the scaling of the Hilbert-space trace, <span>\\(\\textrm{tr} f(P_B(L\\Lambda ))\\)</span>, for polynomials <i>f</i> with <span>\\(f(0)=f(1)=0\\)</span> of these localised ground states in the joint limit <span>\\(L\\rightarrow \\infty \\)</span> and <span>\\(B\\rightarrow 0\\)</span>. We obtain to leading order logarithmically enhanced area-laws depending on the size of <i>LB</i>. Roughly speaking, if 1/<i>B</i> tends to infinity faster than <i>L</i>, then we obtain the known enhanced area-law (by the Widom–Sobolev formula) of the form <span>\\(L \\ln (L) a(f,\\mu ) |\\partial \\Lambda |\\)</span> as <span>\\(L\\rightarrow \\infty \\)</span> for the (two-dimensional) Laplacian with Fermi projection <span>\\(1(H_0\\le \\mu )\\)</span>. On the other hand, if <i>L</i> tends to infinity faster than 1/<i>B</i>, then we get an area law with an <span>\\(L \\ln (\\mu /B) a(f,\\mu ) |\\partial \\Lambda |\\)</span> asymptotic expansion as <span>\\(B\\rightarrow 0\\)</span>. The numerical coefficient <span>\\(a(f,\\mu )\\)</span> in both cases is the same and depends solely on the function <i>f</i> and on <span>\\(\\mu \\)</span>. The asymptotic result in the latter case is based upon the recent joint work of Leschke, Sobolev and the second named author [7] for fixed <i>B</i>, a proof of the sine-kernel asymptotics on a global scale, and on the enhanced area-law in dimension one by Landau and Widom. In the special but important case of a quadratic function <i>f</i> we are able to cover the full range of parameters <i>B</i> and <i>L</i>. In general, we have a smaller region of parameters (<i>B</i>, <i>L</i>) where we can prove the two-scale asymptotic expansion <span>\\(\\textrm{tr} f(P_B(L\\Lambda ))\\)</span> as <span>\\(L\\rightarrow \\infty \\)</span> and <span>\\(B\\rightarrow 0\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02778-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider fermionic ground states of the Landau Hamiltonian, \(H_B\), in a constant magnetic field of strength \(B>0\) in \({\mathbb {R}}^2\) at some fixed Fermi energy \(\mu >0\), described by the Fermi projection \(P_B:=1(H_B\le \mu )\). For some fixed bounded domain \(\Lambda \subset {\mathbb {R}}^2\) with boundary set \(\partial \Lambda \) and an \(L>0\) we restrict these ground states spatially to the scaled domain \(L \Lambda \) and denote the corresponding localised Fermi projection by \(P_B(L\Lambda )\). Then we study the scaling of the Hilbert-space trace, \(\textrm{tr} f(P_B(L\Lambda ))\), for polynomials f with \(f(0)=f(1)=0\) of these localised ground states in the joint limit \(L\rightarrow \infty \) and \(B\rightarrow 0\). We obtain to leading order logarithmically enhanced area-laws depending on the size of LB. Roughly speaking, if 1/B tends to infinity faster than L, then we obtain the known enhanced area-law (by the Widom–Sobolev formula) of the form \(L \ln (L) a(f,\mu ) |\partial \Lambda |\) as \(L\rightarrow \infty \) for the (two-dimensional) Laplacian with Fermi projection \(1(H_0\le \mu )\). On the other hand, if L tends to infinity faster than 1/B, then we get an area law with an \(L \ln (\mu /B) a(f,\mu ) |\partial \Lambda |\) asymptotic expansion as \(B\rightarrow 0\). The numerical coefficient \(a(f,\mu )\) in both cases is the same and depends solely on the function f and on \(\mu \). The asymptotic result in the latter case is based upon the recent joint work of Leschke, Sobolev and the second named author [7] for fixed B, a proof of the sine-kernel asymptotics on a global scale, and on the enhanced area-law in dimension one by Landau and Widom. In the special but important case of a quadratic function f we are able to cover the full range of parameters B and L. In general, we have a smaller region of parameters (B, L) where we can prove the two-scale asymptotic expansion \(\textrm{tr} f(P_B(L\Lambda ))\) as \(L\rightarrow \infty \) and \(B\rightarrow 0\).