Optical intensity-gradient torque due to chiral multipole interplay

Jiquan Wen, Huajin Chen, Hongxia Zheng, Xiaohao Xu, Shaohui Yan, Baoli Yao, Zhifang Lin
{"title":"Optical intensity-gradient torque due to chiral multipole interplay","authors":"Jiquan Wen, Huajin Chen, Hongxia Zheng, Xiaohao Xu, Shaohui Yan, Baoli Yao, Zhifang Lin","doi":"arxiv-2409.11924","DOIUrl":null,"url":null,"abstract":"Owing to the ubiquity and easy-to-shape property of optical intensity, the\nintensity gradient force of light has been most spectacularly exploited in\noptical manipulation of small particles. Manifesting the intensity gradient as\nan optical torque to spin particles is of great fascination on both fundamental\nand practical sides but remains elusive. Here, we uncover the existence of the\noptical intensity-gradient torque in the interaction of light with chiral\nparticles. Such a new type of torque derives from the interplay between\nchirality induced multipoles, which switches its direction for particles with\nopposite chirality. We show that this torque can be directly detected by a\nsimple standing wave field, created with the interference of two\ncounterpropagating plane-like waves. Our work offers a unique route to achieve\nrotational control of matter by tailoring the field intensity of Maxwell waves.\nIt also establishes a framework that maps a remarkable connection among the\noptical forces and torques, across chiral to nonchiral.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":"202 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to the ubiquity and easy-to-shape property of optical intensity, the intensity gradient force of light has been most spectacularly exploited in optical manipulation of small particles. Manifesting the intensity gradient as an optical torque to spin particles is of great fascination on both fundamental and practical sides but remains elusive. Here, we uncover the existence of the optical intensity-gradient torque in the interaction of light with chiral particles. Such a new type of torque derives from the interplay between chirality induced multipoles, which switches its direction for particles with opposite chirality. We show that this torque can be directly detected by a simple standing wave field, created with the interference of two counterpropagating plane-like waves. Our work offers a unique route to achieve rotational control of matter by tailoring the field intensity of Maxwell waves. It also establishes a framework that maps a remarkable connection among the optical forces and torques, across chiral to nonchiral.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手性多极相互作用导致的光强度梯度扭矩
由于光强度无处不在且易于塑造的特性,光强度梯度力在光学操纵小粒子方面得到了最引人注目的利用。将强度梯度表现为对自旋粒子的光力矩,这在基础和实用两方面都具有极大的吸引力,但却仍然难以实现。在这里,我们发现在光与手性粒子的相互作用中存在光学强度梯度力矩。这种新型扭矩源于手性诱导的多极之间的相互作用,它可以改变具有相反手性的粒子的方向。我们的研究表明,这种转矩可以通过简单的驻波场直接探测到,这种驻波场是由两个相向传播的平面波干涉产生的。我们的研究为通过调整麦克斯韦波的场强来实现对物质的动力控制提供了一条独特的途径。它还建立了一个框架,映射了从手性到非手性的光学力和转矩之间的显著联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical Label-Free Microscopy Characterization of Dielectric Nanoparticles Enwrapped Perylene Bisimide Enables Room Temperature Polariton Lasing and Photonic Lattices Chiral patterning of rough surfaces with vortex laser beams: from structured polarization to twisted forces Scaling of pseudospectra in exponentially sensitive lattices Surface Phonon Polariton Ellipsometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1