Wenchao Zhang, Ming Wen, Qingguo Chen, Dong Yue, Yu Feng
{"title":"Preparation and study on electrical/thermal properties of epoxy/polyacrylate rubber composite dielectric","authors":"Wenchao Zhang, Ming Wen, Qingguo Chen, Dong Yue, Yu Feng","doi":"10.1002/app.56289","DOIUrl":null,"url":null,"abstract":"With the development of power systems and electronic devices, epoxy resin (EP) is facing increasingly severe operating environments, and its performance may not meet expectations. In order to broaden the application of EP, the DE/EP composite films were prepared with EP as matrix, polyacrylic rubber dielectric elastomer (DE) as reinforcement materials. The structure of DE/EP composite films was characterized by XRD, SEM, and other methods, and the electrical and thermal properties of the materials were tested and studied. The study found that with appropriate dissolution and stirring treatment, DE can be evenly dispersed in the EP matrix, and the introduction of DE does not significantly affect the structure of the EP molecular chain, also found the introduction of DE improve the electrical and thermal properties of EP. The breakdown strength of the 4% DE/EP composite film surpasses that of the pure EP film by 15.58%. Additionally, the thermal conductivity of the 8% DE/EP composite film is elevated by 41.6% compared to the pure EP film, while its dielectric constant is also enhanced by 8.2%. This work may provide a theoretical basis for studying the application of EP modified system in electrical engineering, integrated circuit packaging and other fields.","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/app.56289","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of power systems and electronic devices, epoxy resin (EP) is facing increasingly severe operating environments, and its performance may not meet expectations. In order to broaden the application of EP, the DE/EP composite films were prepared with EP as matrix, polyacrylic rubber dielectric elastomer (DE) as reinforcement materials. The structure of DE/EP composite films was characterized by XRD, SEM, and other methods, and the electrical and thermal properties of the materials were tested and studied. The study found that with appropriate dissolution and stirring treatment, DE can be evenly dispersed in the EP matrix, and the introduction of DE does not significantly affect the structure of the EP molecular chain, also found the introduction of DE improve the electrical and thermal properties of EP. The breakdown strength of the 4% DE/EP composite film surpasses that of the pure EP film by 15.58%. Additionally, the thermal conductivity of the 8% DE/EP composite film is elevated by 41.6% compared to the pure EP film, while its dielectric constant is also enhanced by 8.2%. This work may provide a theoretical basis for studying the application of EP modified system in electrical engineering, integrated circuit packaging and other fields.
随着电力系统和电子设备的发展,环氧树脂(EP)面临着越来越严酷的工作环境,其性能可能无法达到预期。为了拓宽环氧树脂的应用领域,本文以环氧树脂为基体,聚丙烯酸橡胶介电弹性体(DE)为增强材料,制备了 DE/EP 复合薄膜。通过 XRD、SEM 等方法对 DE/EP 复合薄膜的结构进行了表征,并对材料的电性能和热性能进行了测试和研究。研究发现,经过适当的溶解和搅拌处理,DE 可以均匀地分散在 EP 基体中,且 DE 的引入不会明显影响 EP 分子链的结构,还发现 DE 的引入改善了 EP 的电学和热学性能。4% DE/EP 复合薄膜的击穿强度比纯 EP 薄膜高出 15.58%。此外,与纯 EP 薄膜相比,8% DE/EP 复合薄膜的热导率提高了 41.6%,介电常数也提高了 8.2%。这项工作可为研究 EP 改性系统在电气工程、集成电路封装等领域的应用提供理论依据。
期刊介绍:
The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.