Yancheng Li, Zhiheng Ding, Xingquan Wang, Xinyue Wang, Baoguo Han
{"title":"Molecular dynamics study on structural characteristics of amorphous C-S-H with different Ca/Si ratios","authors":"Yancheng Li, Zhiheng Ding, Xingquan Wang, Xinyue Wang, Baoguo Han","doi":"10.1111/jace.20134","DOIUrl":null,"url":null,"abstract":"<p>As the major hydration product of cement, hydrated calcium silicate (C-S-H) governs the overall performance of cement-based materials. The molar ratio of CaO to SiO<sub>2</sub> (Ca/Si ratio) significantly affects the structure and properties of C-S-H. This study analyzed the effect of Ca/Si ratios (0.83–2.0) on the structural morphology evolution, bond lengths and angles, polymerization process, and nanoporosity of amorphous C-S-H, with the help of the ReaxFF force field. The results showed that the reacted C-S-H tend to form a fibrous network-like morphology at low Ca/Si ratios, while the silicate chains are prone to accumulating at high Ca/Si ratios, forming a dense granular ovoid structure. Meanwhile, the Ca/Si ratio has no effect on the bond lengths and angles. In addition, the Ca<sup>2+</sup> ions can interrupt the silicate chains during hydration, which leads to a decrease in the average silicate chain length with increasing Ca/Si ratio. The porosity of C-S-H decreases from 59.3% to 54.3% when the Ca/Si ratio increases from 0.83 to 2.0. It can be deduced from these findings that the increase in the Ca/Si ratio decreases the compressive strength of cement-based materials but increases their durability.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20134","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
As the major hydration product of cement, hydrated calcium silicate (C-S-H) governs the overall performance of cement-based materials. The molar ratio of CaO to SiO2 (Ca/Si ratio) significantly affects the structure and properties of C-S-H. This study analyzed the effect of Ca/Si ratios (0.83–2.0) on the structural morphology evolution, bond lengths and angles, polymerization process, and nanoporosity of amorphous C-S-H, with the help of the ReaxFF force field. The results showed that the reacted C-S-H tend to form a fibrous network-like morphology at low Ca/Si ratios, while the silicate chains are prone to accumulating at high Ca/Si ratios, forming a dense granular ovoid structure. Meanwhile, the Ca/Si ratio has no effect on the bond lengths and angles. In addition, the Ca2+ ions can interrupt the silicate chains during hydration, which leads to a decrease in the average silicate chain length with increasing Ca/Si ratio. The porosity of C-S-H decreases from 59.3% to 54.3% when the Ca/Si ratio increases from 0.83 to 2.0. It can be deduced from these findings that the increase in the Ca/Si ratio decreases the compressive strength of cement-based materials but increases their durability.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.