Eleanor M Hennessy, Corinne D Scown and Inês M L Azevedo
{"title":"The health, climate, and equity benefits of freight truck electrification in the United States","authors":"Eleanor M Hennessy, Corinne D Scown and Inês M L Azevedo","doi":"10.1088/1748-9326/ad75a9","DOIUrl":null,"url":null,"abstract":"Long-haul freight shipment in the United States relies on diesel trucks and constitutes ∼3% of U.S. greenhouse gas emissions and a significant share of local air pollution. Here, we compare the climate and air pollution-related health damages from electric versus diesel long-haul truck fleets. We use truck commodity flows to estimate tailpipe emissions from diesel trucks and regional grid emissions intensities to estimate charging emissions from electric trucks under various grid scenarios. We use a reduced complexity air quality model combined with valuation of air pollution-related premature deaths (using two hazard ratios (HRs)) and quantify the distributional health impacts in different scenarios. We find that annual health and climate costs of the current diesel fleet are $195–$249/capita compared to $174–$205/capita for a new diesel fleet, and $156–$177/capita for an electric fleet, depending on the HR. We find that freight electrification could avoid $6.2–8.5 billion in health and climate damages annually when compared to a fleet of new diesel vehicles (with even higher benefits when compared to the current diesel fleet). However, the Midwest and parts of the Gulf Coast would experience an increase in health damages due to vehicles charging using electricity from coal power plants. If old coal power plants (operating in 1980 or earlier) are replaced with zero-emission generation, electrification of all U.S. freight would result in $32.3–39.2 billion in avoided damages annually and health benefits throughout the U.S. Electrifying transport of consumer manufacturing goods (including electronics, transport equipment, and precision instruments) and food, beverage, and tobacco products would provide the largest absolute health and climate benefits, whereas mixed freight and manufacturing goods would result in the largest benefits per tonne-km. We find small variations in health damages across race and income. These results will help policymakers prioritize electrification and charging investment strategies for the freight transportation sub-sector.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"76 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad75a9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Long-haul freight shipment in the United States relies on diesel trucks and constitutes ∼3% of U.S. greenhouse gas emissions and a significant share of local air pollution. Here, we compare the climate and air pollution-related health damages from electric versus diesel long-haul truck fleets. We use truck commodity flows to estimate tailpipe emissions from diesel trucks and regional grid emissions intensities to estimate charging emissions from electric trucks under various grid scenarios. We use a reduced complexity air quality model combined with valuation of air pollution-related premature deaths (using two hazard ratios (HRs)) and quantify the distributional health impacts in different scenarios. We find that annual health and climate costs of the current diesel fleet are $195–$249/capita compared to $174–$205/capita for a new diesel fleet, and $156–$177/capita for an electric fleet, depending on the HR. We find that freight electrification could avoid $6.2–8.5 billion in health and climate damages annually when compared to a fleet of new diesel vehicles (with even higher benefits when compared to the current diesel fleet). However, the Midwest and parts of the Gulf Coast would experience an increase in health damages due to vehicles charging using electricity from coal power plants. If old coal power plants (operating in 1980 or earlier) are replaced with zero-emission generation, electrification of all U.S. freight would result in $32.3–39.2 billion in avoided damages annually and health benefits throughout the U.S. Electrifying transport of consumer manufacturing goods (including electronics, transport equipment, and precision instruments) and food, beverage, and tobacco products would provide the largest absolute health and climate benefits, whereas mixed freight and manufacturing goods would result in the largest benefits per tonne-km. We find small variations in health damages across race and income. These results will help policymakers prioritize electrification and charging investment strategies for the freight transportation sub-sector.
期刊介绍:
Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management.
The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.