Ahmad Hapiz, Muhammad Arif Asyraaf Ramlan, Lee D. Wilson, Zeid A. ALOthman, Ali H. Jawad
{"title":"Spent coffee activated carbon via microwave-induced H3PO4 activation for brilliant green dye removal: statistical parametric optimization","authors":"Ahmad Hapiz, Muhammad Arif Asyraaf Ramlan, Lee D. Wilson, Zeid A. ALOthman, Ali H. Jawad","doi":"10.1007/s13399-024-06139-3","DOIUrl":null,"url":null,"abstract":"<p>Herein, spent coffee (SPC) was converted to activated carbon (SPCAC) via microwave-assisted H<sub>3</sub>PO<sub>4</sub> activation. The microwave power was set at 600 W and irradiation time 15 min with an impregnation ratio of precursor/chemical activator (1-g SPC:2-mL H<sub>3</sub>PO<sub>4</sub>). The surface property and functionality of SPCAC was investigated by several analytical techniques that include gas adsorption (BET), SEM, XRD, FTIR, and pH<sub>pzc</sub>. The applicability of the SPCAC adsorbent was evaluated for the removal of cationic brilliant green (BG) dye from aqueous solution. Thus, the adsorptive removal process was optimized using the Box-Benken design (BBD) to assess key adsorption parameters that include SPCAC dosage (0.05–0.15 g/100 mL) coded as (A), solution pH (4–9) coded as (B) and contact time (30 to 360 min) coded as (C). The analysis of variance (ANOVA) test shows the significant interaction between the key adsorption parameters (AB, AC, and BC). From BBD results, optimal BG dye removal (99.6%) was recorded at 0.15 g of SPCAC dose, pH 6.5, and a 30-min contact time. The adsorption mechanism of BG dye onto SPCAC was assigned to various factors that include pore filling, electrostatic forces, π-π stacking, and H-bonding. Thus, the finding of this research shows the potential benefits of converting spent coffee into active carbon by using a convenient thermochemical method with practical application for the removal of toxic cationic dyes from aqueous media.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"51 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06139-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, spent coffee (SPC) was converted to activated carbon (SPCAC) via microwave-assisted H3PO4 activation. The microwave power was set at 600 W and irradiation time 15 min with an impregnation ratio of precursor/chemical activator (1-g SPC:2-mL H3PO4). The surface property and functionality of SPCAC was investigated by several analytical techniques that include gas adsorption (BET), SEM, XRD, FTIR, and pHpzc. The applicability of the SPCAC adsorbent was evaluated for the removal of cationic brilliant green (BG) dye from aqueous solution. Thus, the adsorptive removal process was optimized using the Box-Benken design (BBD) to assess key adsorption parameters that include SPCAC dosage (0.05–0.15 g/100 mL) coded as (A), solution pH (4–9) coded as (B) and contact time (30 to 360 min) coded as (C). The analysis of variance (ANOVA) test shows the significant interaction between the key adsorption parameters (AB, AC, and BC). From BBD results, optimal BG dye removal (99.6%) was recorded at 0.15 g of SPCAC dose, pH 6.5, and a 30-min contact time. The adsorption mechanism of BG dye onto SPCAC was assigned to various factors that include pore filling, electrostatic forces, π-π stacking, and H-bonding. Thus, the finding of this research shows the potential benefits of converting spent coffee into active carbon by using a convenient thermochemical method with practical application for the removal of toxic cationic dyes from aqueous media.
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.