Doping fluoride into ternary FeCoNi hydroxide electrocatalysts to boost oxygen evolution reaction†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2024-09-19 DOI:10.1039/D4SE01241K
Wen-Ju Lu and Tzung-Wen Chiou
{"title":"Doping fluoride into ternary FeCoNi hydroxide electrocatalysts to boost oxygen evolution reaction†","authors":"Wen-Ju Lu and Tzung-Wen Chiou","doi":"10.1039/D4SE01241K","DOIUrl":null,"url":null,"abstract":"<p >Developing high-current oxygen evolution reaction (OER) electrocatalysts with low overpotential, high conductivity, high active surface area, and high stability is an attractive yet challenging process. Herein, a ternary FeCoNi hydroxide-fluoride material by doping fluoride into FeCoNi(OH)<small><sub><em>x</em></sub></small> was synthesized through a simple electrodeposition method. The OER performance of FeCoNiF(OH)<small><sub><em>x</em></sub></small> on a nickel foam electrode with a high surface area was associated with overpotentials of 243, 328, and 412 mV, with geometrical current densities of 100, 500, and 1000 mA cm<small><sup>−2</sup></small>, respectively, in 1.0 M KOH solution. In addition, FeCoNiF(OH)<small><sub><em>x</em></sub></small> exhibited high stability during controlled potential electrolysis in 1.0 M KOH at an overpotential of 243 mV for 50 h. Overall, we believe that our findings can advance the investigation of OER electrocatalysts.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 21","pages":" 4903-4906"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01241k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing high-current oxygen evolution reaction (OER) electrocatalysts with low overpotential, high conductivity, high active surface area, and high stability is an attractive yet challenging process. Herein, a ternary FeCoNi hydroxide-fluoride material by doping fluoride into FeCoNi(OH)x was synthesized through a simple electrodeposition method. The OER performance of FeCoNiF(OH)x on a nickel foam electrode with a high surface area was associated with overpotentials of 243, 328, and 412 mV, with geometrical current densities of 100, 500, and 1000 mA cm−2, respectively, in 1.0 M KOH solution. In addition, FeCoNiF(OH)x exhibited high stability during controlled potential electrolysis in 1.0 M KOH at an overpotential of 243 mV for 50 h. Overall, we believe that our findings can advance the investigation of OER electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在三元氢氧化铁钴镍电催化剂中掺入氟化物以促进氧进化反应
开发具有低过电位、高导电性、高活性表面积和高稳定性的大电流氧进化反应(OER)电催化剂是一项极具吸引力但又极具挑战性的工作。本文通过简单的电沉积方法,在铁钴镍(OH)x中掺杂氟化物,合成了氢氧化铁钴镍-氟化物三元材料。在 1.0 M KOH 溶液中,FeCoNiF(OH)x 在高比表面积泡沫镍电极上的 OER 性能分别为过电位 243、328 和 412 mV,几何电流密度分别为 100、500 和 1000 mA cm-2。此外,FeCoNiF(OH)x 在 1.0 M KOH 溶液中以 243 mV 的过电位持续 50 小时的受控电位电解过程中表现出很高的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
Back cover Back cover Recent advances and opportunities in perovskite-based triple-junction tandem solar cells Enhanced thermoelectric properties of Cu1.8S via the introduction of ZnS nanostructures† Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1