Jiacheng Zhong, Shuang Shi, Wen Peng, Hongjuan Cui, Xiaochuan Sun
{"title":"HMGN2 accelerates the proliferation and cell cycle progression of glioblastoma by regulating CDC20 expression","authors":"Jiacheng Zhong, Shuang Shi, Wen Peng, Hongjuan Cui, Xiaochuan Sun","doi":"10.1016/j.gendis.2024.101433","DOIUrl":null,"url":null,"abstract":"Gliomas represent the most common primary malignant intracranial tumors in adults. Despite recent advances in treatment, the prognosis of patients with glioblastoma remains poor. Epigenetic abnormalities, the hallmarks of various types of cancer, contribute to the dysregulated expression of cancer-related genes. Post-translational modification of histones plays a pivotal role in cancer development and progression by modulating gene transcription, chromatin remodeling, and nuclear structure. Therefore, further exploration of the molecular mechanisms of epigenetic regulation in gliomas and the identification of superior therapeutic targets are required. High-mobility group nucleosomal-binding domain 2 (HMGN2) participates in the epigenetic regulation of genes through histone modification and exhibits significant differential expression between glioma and normal tissues. However, the effect of HMGN2 on gliomas and its underlying mechanisms remain unclear. This study aimed to elucidate these uncertainties by demonstrating that HMGN2 significantly promotes the proliferation of glioma cells. HMGN2 binds to histones and promotes the stability of H3K27ac acetylation in the cell division cycle 20 (CDC20) promoter region, enhancing the transcriptional activity of CDC20 and increasing the proliferation of glioma cells. Moreover, we found that CDC20 expression was negatively correlated with the survival time of patients with glioma. These results suggest that targeting epigenetic regulation, such as the HMGN2/CDC20 axis, may provide a novel direction for the treatment of gliomas.","PeriodicalId":12689,"journal":{"name":"Genes & Diseases","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.gendis.2024.101433","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gliomas represent the most common primary malignant intracranial tumors in adults. Despite recent advances in treatment, the prognosis of patients with glioblastoma remains poor. Epigenetic abnormalities, the hallmarks of various types of cancer, contribute to the dysregulated expression of cancer-related genes. Post-translational modification of histones plays a pivotal role in cancer development and progression by modulating gene transcription, chromatin remodeling, and nuclear structure. Therefore, further exploration of the molecular mechanisms of epigenetic regulation in gliomas and the identification of superior therapeutic targets are required. High-mobility group nucleosomal-binding domain 2 (HMGN2) participates in the epigenetic regulation of genes through histone modification and exhibits significant differential expression between glioma and normal tissues. However, the effect of HMGN2 on gliomas and its underlying mechanisms remain unclear. This study aimed to elucidate these uncertainties by demonstrating that HMGN2 significantly promotes the proliferation of glioma cells. HMGN2 binds to histones and promotes the stability of H3K27ac acetylation in the cell division cycle 20 (CDC20) promoter region, enhancing the transcriptional activity of CDC20 and increasing the proliferation of glioma cells. Moreover, we found that CDC20 expression was negatively correlated with the survival time of patients with glioma. These results suggest that targeting epigenetic regulation, such as the HMGN2/CDC20 axis, may provide a novel direction for the treatment of gliomas.
期刊介绍:
Genes & Diseases is an international journal for molecular and translational medicine. The journal primarily focuses on publishing investigations on the molecular bases and experimental therapeutics of human diseases. Publication formats include full length research article, review article, short communication, correspondence, perspectives, commentary, views on news, and research watch.
Aims and Scopes
Genes & Diseases publishes rigorously peer-reviewed and high quality original articles and authoritative reviews that focus on the molecular bases of human diseases. Emphasis will be placed on hypothesis-driven, mechanistic studies relevant to pathogenesis and/or experimental therapeutics of human diseases. The journal has worldwide authorship, and a broad scope in basic and translational biomedical research of molecular biology, molecular genetics, and cell biology, including but not limited to cell proliferation and apoptosis, signal transduction, stem cell biology, developmental biology, gene regulation and epigenetics, cancer biology, immunity and infection, neuroscience, disease-specific animal models, gene and cell-based therapies, and regenerative medicine.