Triple-layered encapsulation of sensitive biomolecules into poly (ε-caprolactone) nanofibers using AC electrospraying.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of Biomaterials Science, Polymer Edition Pub Date : 2024-09-12 DOI:10.1080/09205063.2024.2399387
Nikifor Asatiani,Petra Křtěnová,Pavel Šimon,Štěpán Kunc,Petr Mikeš
{"title":"Triple-layered encapsulation of sensitive biomolecules into poly (ε-caprolactone) nanofibers using AC electrospraying.","authors":"Nikifor Asatiani,Petra Křtěnová,Pavel Šimon,Štěpán Kunc,Petr Mikeš","doi":"10.1080/09205063.2024.2399387","DOIUrl":null,"url":null,"abstract":"The incorporation of sensitive bioactive substances such as proteins or DNA into nanofibers poses a significant problem due to the toxicity of most organic solvents. The main idea of this study is to use alternating current electrospraying to create a suspension consisting of polyvinyl alcohol (PVA) capsules containing a bioactive substance dispersed in a solvent system suitable for a water-insoluble biocompatible polymer. In this suspension consisting of PVA capsules and a chloroform/ethanol mixture, poly (ε-caprolactone) (PCL) was dissolved and spun by needle-free electrospinning. The result is a fibrous PCL structure in which PVA capsules containing the bioactive agent are integrated. The PVA capsules protect the bioactive substance from the organic solvents needed to dissolve the PCL. To verify the efficacy of the capsules' protection against chloroform, the green fluorescent protein was first encapsulated into the nanofibers, followed by horseradish peroxidase. Both molecules were shown to retain their bioactivity within the nanofibers.","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":"17 1","pages":"1-19"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2399387","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The incorporation of sensitive bioactive substances such as proteins or DNA into nanofibers poses a significant problem due to the toxicity of most organic solvents. The main idea of this study is to use alternating current electrospraying to create a suspension consisting of polyvinyl alcohol (PVA) capsules containing a bioactive substance dispersed in a solvent system suitable for a water-insoluble biocompatible polymer. In this suspension consisting of PVA capsules and a chloroform/ethanol mixture, poly (ε-caprolactone) (PCL) was dissolved and spun by needle-free electrospinning. The result is a fibrous PCL structure in which PVA capsules containing the bioactive agent are integrated. The PVA capsules protect the bioactive substance from the organic solvents needed to dissolve the PCL. To verify the efficacy of the capsules' protection against chloroform, the green fluorescent protein was first encapsulated into the nanofibers, followed by horseradish peroxidase. Both molecules were shown to retain their bioactivity within the nanofibers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用交流电喷雾技术将敏感生物分子三层封装到聚(ε-己内酯)纳米纤维中。
由于大多数有机溶剂的毒性,将敏感的生物活性物质(如蛋白质或 DNA)加入纳米纤维是一个重大问题。本研究的主要思路是利用交流电喷涂技术制造一种悬浮液,该悬浮液由聚乙烯醇(PVA)胶囊组成,其中含有分散在适合水不溶性生物相容性聚合物的溶剂系统中的生物活性物质。在这种由 PVA 胶囊和氯仿/乙醇混合物组成的悬浮液中,溶解了聚(ε-己内酯)(PCL),并通过无针电纺丝进行纺丝。最后得到一种纤维状 PCL 结构,其中集成了含有生物活性剂的 PVA 胶囊。PVA 胶囊保护生物活性物质不受溶解 PCL 所需的有机溶剂的影响。为了验证胶囊对氯仿的保护效果,首先将绿色荧光蛋白封装到纳米纤维中,然后再封装辣根过氧化物酶。结果表明,这两种分子在纳米纤维中都保持了生物活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
期刊最新文献
3D printing chronicles in medical devices and pharmaceuticals: tracing the evolution and historical milestones. Enhancing bioactivity of Callistemon citrinus (Curtis) essential oil through novel nanoemulsion formulation. Composite hydrogels fabricated from CMC-PVA-GG incorporated with ZiF-8 for wound healing applications. Osteoconductive composite membranes produced by rotary jet spinning bioresorbable PLGA for bone regeneration. Enhancing therapeutic effects alginate microencapsulation of thyme and calendula oils using ionic gelation for controlled drug delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1