Bone disorders have increased with increasing the human lifespan, and despite the tissue's ability to self-regeneration, in many congenital problems and hard fractures, bone grafting such as autograft, allograft, and biomaterials implantation through surgery is traditionally used. Because of the adverse effects of these methods, the emergence of injectable hydrogels without the need for surgery and causing more pain for the patient is stunning to develop a new pattern for hard tissue engineering. These materials are formed with various natural and synthetic polymers with a crosslinked network through various chemical methods such as click chemistry, Michael enhancement, Schiff's base and enzymatic reaction and physical interactions with high water absorption which can mimic the environment of cells. The purpose of this research is to review the capabilities of this class of materials in hard tissue regeneration in the last decade through adaptable physical and chemical properties, the ability to fill defect sites with an irregular shape, and the ability to grow hormones or release drugs, in response to external stimuli.
{"title":"Progress in injectable hydrogels for hard tissue regeneration in the last decade.","authors":"Mahya Keshavarz, Mohsen Mohammadi, Fatemeh Shokrolahi","doi":"10.1080/09205063.2024.2436292","DOIUrl":"https://doi.org/10.1080/09205063.2024.2436292","url":null,"abstract":"<p><p>Bone disorders have increased with increasing the human lifespan, and despite the tissue's ability to self-regeneration, in many congenital problems and hard fractures, bone grafting such as autograft, allograft, and biomaterials implantation through surgery is traditionally used. Because of the adverse effects of these methods, the emergence of injectable hydrogels without the need for surgery and causing more pain for the patient is stunning to develop a new pattern for hard tissue engineering. These materials are formed with various natural and synthetic polymers with a crosslinked network through various chemical methods such as click chemistry, Michael enhancement, Schiff's base and enzymatic reaction and physical interactions with high water absorption which can mimic the environment of cells. The purpose of this research is to review the capabilities of this class of materials in hard tissue regeneration in the last decade through adaptable physical and chemical properties, the ability to fill defect sites with an irregular shape, and the ability to grow hormones or release drugs, in response to external stimuli.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-39"},"PeriodicalIF":3.6,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Analyzing the chemical composition of different kinds of acrylic cement is necessary to understand their properties and suitability for curing bone defects. Conducting various chemical tests can give valuable insight into the composition, viscosity, and performance characteristics of each kind of cement, Therefore, our study aimed to find safety standards and the effectiveness of these products for medical applications. The polymeric characterization was determined by Nuclear Magnetic Resonance (H-NMR) spectroscopy and Fourier-transform infrared spectroscopy (FTIR). Additionally, gel permeation chromatography (GPC) was used to determine the molecular weight of poly methyl methacrylate (PMMA), which was between 4000 and 6000 Mw. The presence of methyl methacrylate (MMA) monomer observed in all cement within two minutes was determined using gas chromatography-mass spectrometry (GC-MS). Moreover, the images of all radiopaque compounds in the cement were evaluated using Field emission scanning electron microscopy (FESEM) and Energy Dispersive X-ray (EDAX-MAP). The study determined the glass transition (Tg) temperature and conducted differential scanning calorimetry (DCS) analysis for each type of cement. In addition, the setting time for various kinds of spinal cord cement was measured to be more than ten minutes. The percentage of benzoyl peroxide in each cement was determined using titration, ranging from 0.6% to 6%. Additionally, cytotoxicity studies were conducted on human osteoblasts (MG63) in cell culture. In this study, we tried to make a trend line for evaluation types of bone cement that would be applicable for both regulatory buddies and researchers in this field.
{"title":"Comparison of physico-chemical properties of different types of orthopedic acrylic cement.","authors":"Elnaz Taghizadeh, Mona Navaei-Nigjeh, Masoud Mirkazemi, Mazda Rad-Malekshahi","doi":"10.1080/09205063.2024.2449304","DOIUrl":"https://doi.org/10.1080/09205063.2024.2449304","url":null,"abstract":"<p><p>Analyzing the chemical composition of different kinds of acrylic cement is necessary to understand their properties and suitability for curing bone defects. Conducting various chemical tests can give valuable insight into the composition, viscosity, and performance characteristics of each kind of cement, Therefore, our study aimed to find safety standards and the effectiveness of these products for medical applications. The polymeric characterization was determined by Nuclear Magnetic Resonance (H-NMR) spectroscopy and Fourier-transform infrared spectroscopy (FTIR). Additionally, gel permeation chromatography (GPC) was used to determine the molecular weight of poly methyl methacrylate (PMMA), which was between 4000 and 6000 Mw. The presence of methyl methacrylate (MMA) monomer observed in all cement within two minutes was determined using gas chromatography-mass spectrometry (GC-MS). Moreover, the images of all radiopaque compounds in the cement were evaluated using Field emission scanning electron microscopy (FESEM) and Energy Dispersive X-ray (EDAX-MAP). The study determined the glass transition (Tg) temperature and conducted differential scanning calorimetry (DCS) analysis for each type of cement. In addition, the setting time for various kinds of spinal cord cement was measured to be more than ten minutes. The percentage of benzoyl peroxide in each cement was determined using titration, ranging from 0.6% to 6%. Additionally, cytotoxicity studies were conducted on human osteoblasts (MG63) in cell culture. In this study, we tried to make a trend line for evaluation types of bone cement that would be applicable for both regulatory buddies and researchers in this field.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-21"},"PeriodicalIF":3.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143005852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ulcerative colitis, a chronic inflammatory condition of the colon, requires precise and targeted treatment, and polysaccharides, with their pH responsiveness and biodegradability, offer an innovative approach for colon-specific drug delivery. This study aims to develop a highly precise drug delivery system with enhanced therapeutic and targeting efficiency for ulcerative colitis, focusing on the preparation, optimisation, and evaluation of dual cross-linked mesalamine-loaded sericin-pectin (DCLSPs) micro-beads. These beads utilise the pH-responsive and microflora biodegradability properties of polysaccharides for targeted colon delivery, employing the Response Surface Methodology. Formulated via the ionotropic gelation method with divalent cross-linking ions (Ca2+ and SO42-), the DCLSPs were optimised using a Box-Behnken design to assess the impact of the varying drug, pectin, and sericin polymer proportions. The DCLSPs were evaluated for entrapment efficiency, thermal behaviour, surface morphology, water uptake, swelling, and in-vitro drug release. Results indicated that spherical beads were successfully developed, with encapsulation efficiency ranging from 65.1% to 95.5%, drug loading between 32.5% and 49.9%, bead sizes of 0.75 mm to 0.92 mm, and degrees of swelling from 0.92 to 1.82. Drug release was controlled by both diffusion and swelling mechanisms, as supported by the Higuchi and Korsmeyer-Peppas models. The optimised formulation demonstrated high drug encapsulation efficiency, pH-responsive swelling, and strong adhesion to the colon, ensuring extended retention at the targeted site. Additionally, the incorporation of sericin enhanced the accuracy of Gaussian fitting for particle size distribution. Overall, the dual cross-linked sericin-pectin beads show potential as mucoadhesive carriers for delivering drugs specifically to the colon.
{"title":"Designing & optimisation of dual Ca<sup>2+</sup> and SO<sub>4</sub><sup>2-</sup> ionic cross-linked sericin/pectin microbeads using response surface methodology for colon-specific delivery.","authors":"Wasim Akram, Nitin Singh, Kantrol Kumar Sahu, Navneet Garud","doi":"10.1080/09205063.2025.2450930","DOIUrl":"https://doi.org/10.1080/09205063.2025.2450930","url":null,"abstract":"<p><p>Ulcerative colitis, a chronic inflammatory condition of the colon, requires precise and targeted treatment, and polysaccharides, with their pH responsiveness and biodegradability, offer an innovative approach for colon-specific drug delivery. This study aims to develop a highly precise drug delivery system with enhanced therapeutic and targeting efficiency for ulcerative colitis, focusing on the preparation, optimisation, and evaluation of dual cross-linked mesalamine-loaded sericin-pectin (D<sub>CL</sub>SPs) micro-beads. These beads utilise the pH-responsive and microflora biodegradability properties of polysaccharides for targeted colon delivery, employing the Response Surface Methodology. Formulated <i>via</i> the ionotropic gelation method with divalent cross-linking ions (Ca<sup>2+</sup> and SO<sub>4</sub><sup>2-</sup>), the D<sub>CL</sub>SPs were optimised using a Box-Behnken design to assess the impact of the varying drug, pectin, and sericin polymer proportions. The D<sub>CL</sub>SPs were evaluated for entrapment efficiency, thermal behaviour, surface morphology, water uptake, swelling, and in-vitro drug release. Results indicated that spherical beads were successfully developed, with encapsulation efficiency ranging from 65.1% to 95.5%, drug loading between 32.5% and 49.9%, bead sizes of 0.75 mm to 0.92 mm, and degrees of swelling from 0.92 to 1.82. Drug release was controlled by both diffusion and swelling mechanisms, as supported by the Higuchi and Korsmeyer-Peppas models. The optimised formulation demonstrated high drug encapsulation efficiency, pH-responsive swelling, and strong adhesion to the colon, ensuring extended retention at the targeted site. Additionally, the incorporation of sericin enhanced the accuracy of Gaussian fitting for particle size distribution. Overall, the dual cross-linked sericin-pectin beads show potential as mucoadhesive carriers for delivering drugs specifically to the colon.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-26"},"PeriodicalIF":3.6,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143005853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-12DOI: 10.1080/09205063.2024.2449297
Munaza Ijaz, Madiha Khan
Infected burn wounds present significant clinical challenges due to delayed healing and risk of infection, necessitating advanced treatments that offer both antimicrobial and regenerative properties. This study aimed to develop and evaluate multifunctional electrospun nanofiber films incorporating rhamnose (as an angiogenic agent) and therapeutic agents, namely fluticasone, mupirocin, ciprofloxacin, and silver sulfadiazine, for the enhanced healing of infected burn wounds. Nanofibers containing rhamnose, polyacrylonitrile, polyvinyl alcohol and therapeutic agents were fabricated via electrospinning. The nanofibers were characterized chemically and biologically. FTIR confirmed successful drug incorporation, while XRD indicated a reduced crystallinity in drug-loaded nanofibers. SEM analysis revealed bead formation in some formulations. MTT assays demonstrated moderate cytotoxicity, with formulations F2 (containing all components) and F4 (containing all components except silver sulfadiazine) showing enhanced activity due to rhamnose. Antibacterial studies indicated superior efficacy of formulations F1 (containing all components except rhamnose) and F2 against Staphylococcus aureus and Klebsiella pneumoniae, while anti-inflammatory assays highlighted strong ROS inhibition by formulations containing rhamnose. In vivo wound healing studies for 14 days showed faster wound closure and reduced scarring in groups treated with nanofiber formulations F1-F4, particularly those containing multiple active agents, achieving up to 30% faster healing than the control group. The multifunctional nanofibers exhibited promising antimicrobial, anti-inflammatory, and wound-healing properties, making them potential candidates for treating infected burn wounds. Further studies are needed to optimize the formulations for clinical.
{"title":"Multifunctional electrospun nanofiber films of polyacrylonitrile and polyvinyl alcohol incorporating rhamnose and therapeutic agents for enhanced healing of infected burn wounds.","authors":"Munaza Ijaz, Madiha Khan","doi":"10.1080/09205063.2024.2449297","DOIUrl":"https://doi.org/10.1080/09205063.2024.2449297","url":null,"abstract":"<p><p>Infected burn wounds present significant clinical challenges due to delayed healing and risk of infection, necessitating advanced treatments that offer both antimicrobial and regenerative properties. This study aimed to develop and evaluate multifunctional electrospun nanofiber films incorporating rhamnose (as an angiogenic agent) and therapeutic agents, namely fluticasone, mupirocin, ciprofloxacin, and silver sulfadiazine, for the enhanced healing of infected burn wounds. Nanofibers containing rhamnose, polyacrylonitrile, polyvinyl alcohol and therapeutic agents were fabricated <i>via</i> electrospinning. The nanofibers were characterized chemically and biologically. FTIR confirmed successful drug incorporation, while XRD indicated a reduced crystallinity in drug-loaded nanofibers. SEM analysis revealed bead formation in some formulations. MTT assays demonstrated moderate cytotoxicity, with formulations F2 (containing all components) and F4 (containing all components except silver sulfadiazine) showing enhanced activity due to rhamnose. Antibacterial studies indicated superior efficacy of formulations F1 (containing all components except rhamnose) and F2 against <i>Staphylococcus aureus</i> and <i>Klebsiella pneumoniae</i>, while anti-inflammatory assays highlighted strong ROS inhibition by formulations containing rhamnose. <i>In vivo</i> wound healing studies for 14 days showed faster wound closure and reduced scarring in groups treated with nanofiber formulations F1-F4, particularly those containing multiple active agents, achieving up to 30% faster healing than the control group. The multifunctional nanofibers exhibited promising antimicrobial, anti-inflammatory, and wound-healing properties, making them potential candidates for treating infected burn wounds. Further studies are needed to optimize the formulations for clinical.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-33"},"PeriodicalIF":3.6,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1080/09205063.2025.2450150
Anand Badrivishal Mundada, Pankaj Pradhan, Rajapandi Raju, Y Sarah Sujitha, Parag Arun Kulkarni, Pooja Anand Mundada, Ruchi Tiwari, Pankaj Sharma
Molecular Dynamics (MD) simulations are now widely utilized in pharmaceutical nanotechnology to gain deeper understanding of nanoscale processes imperative to drug design. This review has also detailed how MD simulation can be employed in the study of drug-nanocarrier interactions, controlling release of chemical compounds from drug delivery systems and increasing solubility and bioavailability of nanocarriers. Furthermore, MD contributes to examining the drug delivery systems, measuring the toxic effects, and determining biocompatibility of nanomedical systems. With the incorporation of artificial intelligence and the use of hybrid simulation systems, MD has gone a step ahead to model other niches of biology that make a tremendous opening to develop highly selective nanomedications. Nevertheless, with well-known issues such as computational constraints and the discrepancy between in silico and experiment results, MD remains a work in progress, with considerable promise for replacing or supplementing existing approaches to the development of precision medicine and nanomedicine, the continued progression of healthcare hopeful.
{"title":"Molecular dynamics in pharmaceutical nanotechnology: simulating interactions and advancing applications.","authors":"Anand Badrivishal Mundada, Pankaj Pradhan, Rajapandi Raju, Y Sarah Sujitha, Parag Arun Kulkarni, Pooja Anand Mundada, Ruchi Tiwari, Pankaj Sharma","doi":"10.1080/09205063.2025.2450150","DOIUrl":"https://doi.org/10.1080/09205063.2025.2450150","url":null,"abstract":"<p><p>Molecular Dynamics (MD) simulations are now widely utilized in pharmaceutical nanotechnology to gain deeper understanding of nanoscale processes imperative to drug design. This review has also detailed how MD simulation can be employed in the study of drug-nanocarrier interactions, controlling release of chemical compounds from drug delivery systems and increasing solubility and bioavailability of nanocarriers. Furthermore, MD contributes to examining the drug delivery systems, measuring the toxic effects, and determining biocompatibility of nanomedical systems. With the incorporation of artificial intelligence and the use of hybrid simulation systems, MD has gone a step ahead to model other niches of biology that make a tremendous opening to develop highly selective nanomedications. Nevertheless, with well-known issues such as computational constraints and the discrepancy between in silico and experiment results, MD remains a work in progress, with considerable promise for replacing or supplementing existing approaches to the development of precision medicine and nanomedicine, the continued progression of healthcare hopeful.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-27"},"PeriodicalIF":3.6,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1080/09205063.2024.2438497
Yongze Liu, Mei Li, Genyuan Li, Lei He, Xiaofeng Ma, Zhaoxiang Zhang, Jun Zhang
The risks associated with wound infections are significant, making a snug-fitting hydrogel dressing an optimal choice for wound management. For it, we employed the self-cross-linking method of oxidized sodium alginate (SCSA), incorporating clarithromycin (Cla) and basic fibroblast growth factor (bFGF) to formulate a rapidly forming, bacteriostatic, and wound-healing hydrogel (SCSA@C/b). Bacteriostatic and cytocompatibility assays demonstrated that SCSA@C/b exhibits exceptional antibacterial activity alongside strong biocompatibility. A fractional infected wound model showed that SCSA@C/b accelerated healing of infected wounds by approximately three days compared to the healing time of the control group, with nearly complete wound recovery. H&E staining and SEM analysis of the healed wound sections revealed significant pro-healing effects. Thus, SCSA@C/b is a promising medicinal hydrogel for encouraging wound healing in contaminated areas.
{"title":"Rapidly self-crosslinking sodium alginate hydrogel for infected wounds.","authors":"Yongze Liu, Mei Li, Genyuan Li, Lei He, Xiaofeng Ma, Zhaoxiang Zhang, Jun Zhang","doi":"10.1080/09205063.2024.2438497","DOIUrl":"https://doi.org/10.1080/09205063.2024.2438497","url":null,"abstract":"<p><p>The risks associated with wound infections are significant, making a snug-fitting hydrogel dressing an optimal choice for wound management. For it, we employed the self-cross-linking method of oxidized sodium alginate (SCSA), incorporating clarithromycin (Cla) and basic fibroblast growth factor (bFGF) to formulate a rapidly forming, bacteriostatic, and wound-healing hydrogel (SCSA@C/b). Bacteriostatic and cytocompatibility assays demonstrated that SCSA@C/b exhibits exceptional antibacterial activity alongside strong biocompatibility. A fractional infected wound model showed that SCSA@C/b accelerated healing of infected wounds by approximately three days compared to the healing time of the control group, with nearly complete wound recovery. H&E staining and SEM analysis of the healed wound sections revealed significant pro-healing effects. Thus, SCSA@C/b is a promising medicinal hydrogel for encouraging wound healing in contaminated areas.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-14"},"PeriodicalIF":3.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, there has been a great interest in the development of innovative wound dressing materials based on natural bioactives, as they can accelerate the healing process and address the issues related to traditional wound dressings. The current study focuses on developing a novel derivative of guar gum (GG) and gallic acid (GA) using a simple, free radical-mediated polymerization reaction aimed at enhancing the antioxidant properties of GG. Multiple spectroscopic investigations were performed to validate the GA-GG conjugate. NMR and FTIR confirmed GA integration, UV spectroscopy indicated changes in electronic transition, DSC analysis suggested a reduction in crystallinity, and XRD revealed structural modifications. SEM revealed a porous structure that reflected its polymerized nature. Due to inadequate mechanical strength and film-forming ability of the synthesized GA-GG conjugate, polyelectrolyte complexation method using chitosan was explored to form a polyelectrolyte complex (PEC) film. The film exhibited a high swelling rate, excellent antioxidant properties, and was both hemocompatible and exhibited improved antimicrobial properties. In vitro, in ovo, and in vivo characterizations were performed to compare the performance of these biocomposite films to those of their counterparts. It promoted angiogenesis in the chick yolk sac membrane and demonstrated good cytocompatibility in cell proliferation studies on the viability of the L929 mouse fibroblast cell line. In vivo wound healing efficacy of the PEC film in wound closure was 94.5% as compared to the untreated disease control group (p < 0.001). This work highlights the development of an innovative GA-GG conjugate/chitosan PEC-based film with significant potential for wound healing applications.
{"title":"Gallic acid-guar gum and chitosan-based polyelectrolyte complex film exhibited enhanced wound healing in full-thickness excision wound model.","authors":"Vinita Patole, Dhaneshwari Swami, Ganesh Ingavle, Isha Behere, Divya Ottoor, Nikita Vyawahare, Abhishek Jha, Sanjeevani Deshkar, Vaishali Undale, Avinash Sanap, Supriya Kheur, Avinash Kumar","doi":"10.1080/09205063.2024.2439668","DOIUrl":"https://doi.org/10.1080/09205063.2024.2439668","url":null,"abstract":"<p><p>Recently, there has been a great interest in the development of innovative wound dressing materials based on natural bioactives, as they can accelerate the healing process and address the issues related to traditional wound dressings. The current study focuses on developing a novel derivative of guar gum (GG) and gallic acid (GA) using a simple, free radical-mediated polymerization reaction aimed at enhancing the antioxidant properties of GG. Multiple spectroscopic investigations were performed to validate the GA-GG conjugate. NMR and FTIR confirmed GA integration, UV spectroscopy indicated changes in electronic transition, DSC analysis suggested a reduction in crystallinity, and XRD revealed structural modifications. SEM revealed a porous structure that reflected its polymerized nature. Due to inadequate mechanical strength and film-forming ability of the synthesized GA-GG conjugate, polyelectrolyte complexation method using chitosan was explored to form a polyelectrolyte complex (PEC) film. The film exhibited a high swelling rate, excellent antioxidant properties, and was both hemocompatible and exhibited improved antimicrobial properties. <i>In vitro</i>, <i>in ovo</i>, and <i>in vivo</i> characterizations were performed to compare the performance of these biocomposite films to those of their counterparts. It promoted angiogenesis in the chick yolk sac membrane and demonstrated good cytocompatibility in cell proliferation studies on the viability of the L929 mouse fibroblast cell line. <i>In vivo</i> wound healing efficacy of the PEC film in wound closure was 94.5% as compared to the untreated disease control group (<i>p</i> < 0.001). This work highlights the development of an innovative GA-GG conjugate/chitosan PEC-based film with significant potential for wound healing applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-34"},"PeriodicalIF":3.6,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zein, a plant-based protein obtained from the endosperm of corn (Zea mays L.) received colossal attention in recent years due to its promising features like being economical, mucoadhesive, gastro-resistant, biocompatible and aids to load hydrophilic and hydrophobic therapeutic agents. It can be employed for the fabrication of various drug delivery systems such as nanoparticles, micelles, hydrogels, nanofibers and films. These systems help to stabilize zein making it suitable for a wide range of applications in the food, cosmetic, and pharmaceutical industries. Diverse techniques could be employed in the development of zein-based nanoparticulate systems such as antisolvent technique, electro-spraying, pH-driven, solvent emulsification, spray drying and flash nanoprecipitation. For the efficient targeted delivery of zein, a ligand-based strategy (folic acid, hyaluronic acid, peptide, transferrin) and stimuli-responsive approach (pH, temp. light etc.) could be employed. This review article mainly deals with the introduction of various types of zein-based systems followed by a comprehensive understanding of fabrication techniques. Further, we have extensively elaborated targeted strategies used for zein-based nanoparticulate systems in the management of various diseases. Paramountly, the article explored potential biomedical applications of zein-based systems in recent years. and emphasizes the current challenges related to zein-based nanoparticulate systems with a special focus on improvement in further research. We aim to foster an in depth understanding of zein-based systems in drug delivery and lay the foundation for its advancements in the field of the pharmaceutical and healthcare sector.
{"title":"Zein-based nanoparticulate systems: a journey through fabrication, targeting strategies and biomedical applications.","authors":"Shyam Sudhakar Gomte, Rushikesh Sanjay Shewale, Mayur Kedarnath Vidhate, Tejas Girish Agnihotri, Vasu Peddinti, Biswajit Rout, Swarnlata Saraf, Aakanchha Jain","doi":"10.1080/09205063.2024.2438493","DOIUrl":"https://doi.org/10.1080/09205063.2024.2438493","url":null,"abstract":"<p><p>Zein, a plant-based protein obtained from the endosperm of corn (<i>Zea mays</i> L.) received colossal attention in recent years due to its promising features like being economical, mucoadhesive, gastro-resistant, biocompatible and aids to load hydrophilic and hydrophobic therapeutic agents. It can be employed for the fabrication of various drug delivery systems such as nanoparticles, micelles, hydrogels, nanofibers and films. These systems help to stabilize zein making it suitable for a wide range of applications in the food, cosmetic, and pharmaceutical industries. Diverse techniques could be employed in the development of zein-based nanoparticulate systems such as antisolvent technique, electro-spraying, pH-driven, solvent emulsification, spray drying and flash nanoprecipitation. For the efficient targeted delivery of zein, a ligand-based strategy (folic acid, hyaluronic acid, peptide, transferrin) and stimuli-responsive approach (pH, temp. light etc.) could be employed. This review article mainly deals with the introduction of various types of zein-based systems followed by a comprehensive understanding of fabrication techniques. Further, we have extensively elaborated targeted strategies used for zein-based nanoparticulate systems in the management of various diseases. Paramountly, the article explored potential biomedical applications of zein-based systems in recent years. and emphasizes the current challenges related to zein-based nanoparticulate systems with a special focus on improvement in further research. We aim to foster an in depth understanding of zein-based systems in drug delivery and lay the foundation for its advancements in the field of the pharmaceutical and healthcare sector.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-48"},"PeriodicalIF":3.6,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142914909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1080/09205063.2024.2445376
Gurinderdeep Singh, Ronald Darwin, Krishna Chandra Panda, Shaikh Amir Afzal, Shashwat Katiyar, Ram C Dhakar, Sangeetha Mani
Osteoporosis is well noted to be a universal ailment that realization impaired bone mass and micro architectural deterioration thus enhancing the probability of fracture. Despite its high incidence, its management remains highly demanding because of the multifactorial pathophysiology of the disease. This review highlights recent findings in the management of osteoporosis particularly, gene expression and hormonal control. Some of the newest approaches regarding the subject are described, including single-cell RNA sequencing and long non-coding RNAs. Also, the review reflects new findings on hormonal signaling and estrogen and parathyroid hormone; patient-specific approaches due to genetic and hormonal variation. Potential new biomarkers and AI comprised as factors for improving the ability to anticipate and manage fractures. These hold great potential of new drugs, combination therapies and gene based therapies for osteoporosis in the future. Further studies and cooperation of scientists and clinicians will help to apply such novelties into practical uses in the sphere of medicine in order to enhance the treatment of patients with osteoporosis.
{"title":"Gene expression and hormonal signaling in osteoporosis: from molecular mechanisms to clinical breakthroughs.","authors":"Gurinderdeep Singh, Ronald Darwin, Krishna Chandra Panda, Shaikh Amir Afzal, Shashwat Katiyar, Ram C Dhakar, Sangeetha Mani","doi":"10.1080/09205063.2024.2445376","DOIUrl":"https://doi.org/10.1080/09205063.2024.2445376","url":null,"abstract":"<p><p>Osteoporosis is well noted to be a universal ailment that realization impaired bone mass and micro architectural deterioration thus enhancing the probability of fracture. Despite its high incidence, its management remains highly demanding because of the multifactorial pathophysiology of the disease. This review highlights recent findings in the management of osteoporosis particularly, gene expression and hormonal control. Some of the newest approaches regarding the subject are described, including single-cell RNA sequencing and long non-coding RNAs. Also, the review reflects new findings on hormonal signaling and estrogen and parathyroid hormone; patient-specific approaches due to genetic and hormonal variation. Potential new biomarkers and AI comprised as factors for improving the ability to anticipate and manage fractures. These hold great potential of new drugs, combination therapies and gene based therapies for osteoporosis in the future. Further studies and cooperation of scientists and clinicians will help to apply such novelties into practical uses in the sphere of medicine in order to enhance the treatment of patients with osteoporosis.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-36"},"PeriodicalIF":3.6,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}