首页 > 最新文献

Journal of Biomaterials Science, Polymer Edition最新文献

英文 中文
Neutrophil membrane-coated multifunctional biomimetic nanoparticles for spinal cord injuries. 用于脊髓损伤的中性粒细胞膜包被多功能仿生纳米粒子。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-03-01 Epub Date: 2024-09-19 DOI: 10.1080/09205063.2024.2404760
Hongyi Zhu, Feng Cai, Ziang Li, Lichen Zhang, Xindie Zhou, Jiapei Yao, Wei Wang, Liang Zhou, Xinzhao Jiang, Kun Xi, Yong Gu, Liang Chen, Yidi Zhou

Spinal cord injury (SCI) is one of the most complex diseases. After SCI, severe secondary injuries can cause intense inflammatory storms and oxidative stress responses, leading to extensive neuronal apoptosis. Effective regulation of inflammation and oxidative stress after SCI remains an unresolved challenge. In this study, resveratrol-loaded nanoparticles coated with neutrophil membranes (NMR) were prepared using the emulsion-solvent evaporation method and membrane encapsulation technology. Multifunctional biomimetic nanoparticles retain neutrophil membrane-related receptors and possess a strong adsorption capacity for inflammatory factors. As a drug carrier, NMR can sustainably release resveratrol for >72 h. Moreover, co-culture studies in vitro show that the NMR help regulate macrophage polarization to relieve inflammatory response, reduce intracellular reactive oxygen species by approximately 50%, and improve mitochondrial membrane potential to alleviate oxidative stress. After injecting NMR into the injury site, it reduces early apoptosis, inhibit scar formation, and promote neural network recovery to improve motor function. This study demonstrates the anti-inflammatory, antioxidant, and neuroprotective effects of NMR, thus providing a novel therapeutic strategy for SCI.

脊髓损伤(SCI)是最复杂的疾病之一。脊髓损伤后,严重的继发性损伤可引起强烈的炎症风暴和氧化应激反应,导致大量神经细胞凋亡。有效调节 SCI 后的炎症和氧化应激仍是一个尚未解决的难题。本研究采用乳液-溶剂蒸发法和膜封装技术制备了涂有中性粒细胞膜(NMR)的白藜芦醇负载纳米粒子。多功能仿生物纳米颗粒保留了嗜中性粒细胞膜相关受体,对炎症因子具有很强的吸附能力。此外,体外共培养研究表明,NMR 有助于调节巨噬细胞极化以缓解炎症反应,减少细胞内活性氧约 50%,提高线粒体膜电位以缓解氧化应激。将 NMR 注入损伤部位后,可减少早期细胞凋亡,抑制疤痕形成,促进神经网络恢复,从而改善运动功能。这项研究证明了 NMR 的抗炎、抗氧化和神经保护作用,从而为 SCI 提供了一种新的治疗策略。
{"title":"Neutrophil membrane-coated multifunctional biomimetic nanoparticles for spinal cord injuries.","authors":"Hongyi Zhu, Feng Cai, Ziang Li, Lichen Zhang, Xindie Zhou, Jiapei Yao, Wei Wang, Liang Zhou, Xinzhao Jiang, Kun Xi, Yong Gu, Liang Chen, Yidi Zhou","doi":"10.1080/09205063.2024.2404760","DOIUrl":"10.1080/09205063.2024.2404760","url":null,"abstract":"<p><p>Spinal cord injury (SCI) is one of the most complex diseases. After SCI, severe secondary injuries can cause intense inflammatory storms and oxidative stress responses, leading to extensive neuronal apoptosis. Effective regulation of inflammation and oxidative stress after SCI remains an unresolved challenge. In this study, resveratrol-loaded nanoparticles coated with neutrophil membranes (NMR) were prepared using the emulsion-solvent evaporation method and membrane encapsulation technology. Multifunctional biomimetic nanoparticles retain neutrophil membrane-related receptors and possess a strong adsorption capacity for inflammatory factors. As a drug carrier, NMR can sustainably release resveratrol for >72 h. Moreover, co-culture studies <i>in vitro</i> show that the NMR help regulate macrophage polarization to relieve inflammatory response, reduce intracellular reactive oxygen species by approximately 50%, and improve mitochondrial membrane potential to alleviate oxidative stress. After injecting NMR into the injury site, it reduces early apoptosis, inhibit scar formation, and promote neural network recovery to improve motor function. This study demonstrates the anti-inflammatory, antioxidant, and neuroprotective effects of NMR, thus providing a novel therapeutic strategy for SCI.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"415-439"},"PeriodicalIF":3.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142288068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo delivery of PBAE/ZIF-8 enhances the sensitivity of colorectal cancer to doxorubicin through sh-LncRNA ASB16-AS1. 体内递送 PBAE/ZIF-8 可通过 sh-LncRNA ASB16-AS1 提高结直肠癌对多柔比星的敏感性。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-03-01 Epub Date: 2024-10-20 DOI: 10.1080/09205063.2024.2410060
Qing Yang, Xiaosheng Jin, Yuansen Zhang, Xiaoqiu Wu, Haiying Lin, Tingting Ji, Rongzhou Li

The aim of this study is to investigate the impact of sh-LncRNA ASB16-AS1 on doxorubicin (DOX) resistance in colorectal cancer (CRC). First, an in vitro study was conducted to investigate the effects of LncRNA ASB16-AS1, miR-185-5p, and TEAD1 on drug resistance in CRC cells. Subsequently, utilizing nanotechnology, poly(beta amino esters) (PBAE)/zeolitic imidazolate framework-8 (ZIF-8)@sh-LncRNA ASB16-AS1 nanoparticles (PZSNP) were synthesized and characterized, evaluating their cellular toxicity and hemolytic activity. Finally, a mouse subcutaneous tumor model was established by subcutaneous injection of SW480/DOX cell suspension to investigate the impact of PZSNP on the tumor. Under DOX treatment, downregulation of LncRNA ASB16-AS1, overexpression of miR-185-5p, or downregulation of TEAD1 suppressed the viability and proliferation of drug-resistant CRC cells while promoting apoptosis. Conversely, overexpression of LncRNA ASB16-AS1, inhibition of miR-185-5p, or overexpression of TEAD1 enhanced the viability and proliferation of drug-resistant CRC cells while inhibiting apoptosis. The synthesized PZSNP exhibited a spherical shape with an average particle size of 123.6 nm, possessed positive charge, displayed good stability. It effectively encapsulated shRNA and displayed low cellular toxicity and hemolytic activity. Under DOX treatment, significant tumor necrosis was observed in the PZSNP group, and tumor growth was suppressed without causing weight loss. LncRNA ASB16-AS1, miR-185-5p, and TEAD1 are involved in regulating cell viability, proliferation, and apoptosis, contributing to drug resistance in CRC cells. sh-LncRNA ASB16-AS1 enhances the sensitivity of CRC cells to DOX during treatment, and in vivo delivery of PZSNP may serve as an effective strategy to overcome chemotherapy resistance in CRC.

本研究旨在探讨 sh-LncRNA ASB16-AS1 对结直肠癌(CRC)多柔比星(DOX)耐药性的影响。首先,研究人员在体外研究了 LncRNA ASB16-AS1、miR-185-5p 和 TEAD1 对 CRC 细胞耐药性的影响。随后,利用纳米技术合成了聚(β氨基酯)(PBAE)/沸石咪唑框架-8(ZIF-8)@sh-LncRNA ASB16-AS1纳米颗粒(PZSNP),并对其细胞毒性和溶血活性进行了评价。最后,通过皮下注射 SW480/DOX 细胞悬液建立了小鼠皮下肿瘤模型,以研究 PZSNP 对肿瘤的影响。在 DOX 治疗下,下调 LncRNA ASB16-AS1、过表达 miR-185-5p 或下调 TEAD1 可抑制耐药 CRC 细胞的活力和增殖,同时促进细胞凋亡。相反,过表达 LncRNA ASB16-AS1、抑制 miR-185-5p 或过表达 TEAD1 会增强耐药 CRC 细胞的活力和增殖,同时抑制细胞凋亡。合成的 PZSNP 呈球形,平均粒径为 123.6 nm,带正电荷,稳定性好。它能有效地包裹 shRNA,并显示出较低的细胞毒性和溶血活性。在 DOX 治疗下,PZSNP 组观察到明显的肿瘤坏死,肿瘤生长受到抑制,且不会导致体重减轻。LncRNA ASB16-AS1、miR-185-5p和TEAD1参与调控细胞活力、增殖和凋亡,导致了CRC细胞的耐药性。
{"title":"<i>In vivo</i> delivery of PBAE/ZIF-8 enhances the sensitivity of colorectal cancer to doxorubicin through sh-LncRNA ASB16-AS1.","authors":"Qing Yang, Xiaosheng Jin, Yuansen Zhang, Xiaoqiu Wu, Haiying Lin, Tingting Ji, Rongzhou Li","doi":"10.1080/09205063.2024.2410060","DOIUrl":"10.1080/09205063.2024.2410060","url":null,"abstract":"<p><p>The aim of this study is to investigate the impact of sh-LncRNA ASB16-AS1 on doxorubicin (DOX) resistance in colorectal cancer (CRC). First, an <i>in vitro</i> study was conducted to investigate the effects of LncRNA ASB16-AS1, miR-185-5p, and TEAD1 on drug resistance in CRC cells. Subsequently, utilizing nanotechnology, poly(beta amino esters) (PBAE)/zeolitic imidazolate framework-8 (ZIF-8)@sh-LncRNA ASB16-AS1 nanoparticles (PZSNP) were synthesized and characterized, evaluating their cellular toxicity and hemolytic activity. Finally, a mouse subcutaneous tumor model was established by subcutaneous injection of SW480/DOX cell suspension to investigate the impact of PZSNP on the tumor. Under DOX treatment, downregulation of LncRNA ASB16-AS1, overexpression of miR-185-5p, or downregulation of TEAD1 suppressed the viability and proliferation of drug-resistant CRC cells while promoting apoptosis. Conversely, overexpression of LncRNA ASB16-AS1, inhibition of miR-185-5p, or overexpression of TEAD1 enhanced the viability and proliferation of drug-resistant CRC cells while inhibiting apoptosis. The synthesized PZSNP exhibited a spherical shape with an average particle size of 123.6 nm, possessed positive charge, displayed good stability. It effectively encapsulated shRNA and displayed low cellular toxicity and hemolytic activity. Under DOX treatment, significant tumor necrosis was observed in the PZSNP group, and tumor growth was suppressed without causing weight loss. LncRNA ASB16-AS1, miR-185-5p, and TEAD1 are involved in regulating cell viability, proliferation, and apoptosis, contributing to drug resistance in CRC cells. sh<b>-</b>LncRNA ASB16-AS1 enhances the sensitivity of CRC cells to DOX during treatment, and <i>in vivo</i> delivery of PZSNP may serve as an effective strategy to overcome chemotherapy resistance in CRC.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"495-512"},"PeriodicalIF":3.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ROS-Responsive Nanoparticles with Antioxidative Effect for the treatment of Diabetic Retinopathy. 用于治疗糖尿病视网膜病变的具有抗氧化作用的 ROS 反应性纳米粒子。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-03-01 Epub Date: 2024-09-24 DOI: 10.1080/09205063.2024.2406628
Jinjin Li, Yujia Liu, Kedui Geng, Xin Lu, Xiangchun Shen, Qianqian Guo

Diabetic retinopathy (DR) is a common microvascular complication of diabetes necessitating early intervention to impede progression, despite current clinical treatments focusing on advanced stages. Essential oils from Fructus Alpiniae zerumbet (EOFAZ) have demonstrated efficacy in protecting against high glucose (HG)-induced Müller cell activation and DR development. This study introduced a reactive oxidative species (ROS)-responsive drug delivery system (NPSPHE@EOFAZ) targeting early DR stages and oxidative stress. Our engineered nanoparticles effectively deliver EOFAZ into HG-exposed Müller cells by detecting and responding to elevated oxidative stress levels. The NPSPHE@EOFAZ significantly inhibited abnormal cell growth, reduced oxidative stress, and alleviated inflammation in vitro. In vivo experiments on diabetic mice with DR revealed that NPSPHE@EOFAZ mitigated early pathological changes by reducing oxidative stress and inflammation while also alleviating organ damage in the heart, liver, spleen, lung, and kidney. These findings underscore the potential of NPSPHE@EOFAZ as a promising antioxidant for early intervention in DR pathogenesis.

糖尿病视网膜病变(DR)是一种常见的糖尿病微血管并发症,尽管目前的临床治疗主要针对晚期患者,但仍有必要进行早期干预以阻止病情发展。Fructus Alpiniae zerumbet(EOFAZ)精油在防止高血糖(HG)诱导的Müller细胞活化和糖尿病视网膜病变发展方面具有疗效。本研究引入了一种反应性氧化物(ROS)响应型给药系统(NPSPHE@EOFAZ),其目标是早期DR阶段和氧化应激。我们设计的纳米颗粒通过检测和响应氧化应激水平的升高,有效地将EOFAZ递送到暴露于HG的Müller细胞中。NPSPHE@EOFAZ 在体外显著抑制了细胞的异常生长、降低了氧化应激并缓解了炎症。对患有 DR 的糖尿病小鼠进行的体内实验显示,NPSPHE@EOFAZ 可通过降低氧化应激和炎症缓解早期病理变化,同时还能减轻心脏、肝脏、脾脏、肺脏和肾脏等器官的损伤。这些发现强调了 NPSPHE@EOFAZ 作为一种抗氧化剂在早期干预 DR 发病机制方面的潜力。
{"title":"ROS-Responsive Nanoparticles with Antioxidative Effect for the treatment of Diabetic Retinopathy.","authors":"Jinjin Li, Yujia Liu, Kedui Geng, Xin Lu, Xiangchun Shen, Qianqian Guo","doi":"10.1080/09205063.2024.2406628","DOIUrl":"10.1080/09205063.2024.2406628","url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is a common microvascular complication of diabetes necessitating early intervention to impede progression, despite current clinical treatments focusing on advanced stages. Essential oils from Fructus Alpiniae zerumbet (EOFAZ) have demonstrated efficacy in protecting against high glucose (HG)-induced Müller cell activation and DR development. This study introduced a reactive oxidative species (ROS)-responsive drug delivery system (NPS<sub>PHE</sub>@EOFAZ) targeting early DR stages and oxidative stress. Our engineered nanoparticles effectively deliver EOFAZ into HG-exposed Müller cells by detecting and responding to elevated oxidative stress levels. The NPS<sub>PHE</sub>@EOFAZ significantly inhibited abnormal cell growth, reduced oxidative stress, and alleviated inflammation <i>in vitro. In vivo</i> experiments on diabetic mice with DR revealed that NPS<sub>PHE</sub>@EOFAZ mitigated early pathological changes by reducing oxidative stress and inflammation while also alleviating organ damage in the heart, liver, spleen, lung, and kidney. These findings underscore the potential of NPS<sub>PHE</sub>@EOFAZ as a promising antioxidant for early intervention in DR pathogenesis.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"440-461"},"PeriodicalIF":3.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Urushiol oligomer preparation and evaluations of their antibacterial, antioxidant, and thermal stability. 尿囊素低聚物的制备及其抗菌、抗氧化和热稳定性评估。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-03-01 Epub Date: 2024-10-08 DOI: 10.1080/09205063.2024.2409483
Hongxia Chen, Hao Zhou, Zhiwen Qi, Xingying Xue, Chengzhang Wang

There have been studies published on the composition and coating uses of raw lacquers following enzymatic oxidative polymerization. The change of urushiol' thermal stability and biological activity following polymerization to create oligomer, however, has received little attention. This work using silica gel column chromatography to separate urushiol and urushiol oligomer from polymerized raw lacquer and assessed its antibacterial, antioxidant, and thermal stability in an effort to decrease the allergenicity of urushiol and increase its application. By using gel chromatography, the urushiol oligomer were discovered to be polymers with 2-5 degrees of polymerization. According to characterization results from techniques like UV, FT-IR, and 1H NMR, urushiol was converted into urushiol oligomer by addition reactions, and C-C coupling. The findings demonstrated that the urushiol oligomer' IC50 values for scavenging DPPH and ABTS free radicals were 40.8 and 27.4 μg/mL, respectively, and that their minimum inhibitory concentrations against Staphylococcus aureus and Staphylococcus epidermidis were 250 and 125 μg/mL. The urushiol oligomer's thermogravimetric differential curve peak temperature (461.8 °C) was higher than urushiol's (239.5 °C), indicating that urushiol undergoes polymerization with enhanced thermal stability. The study's findings establish a foundation for the use of polymerized urushiol and urushiol oligomer in applications including functional materials and additives.

关于生漆经酶解氧化聚合后的成分和涂料用途,已有研究发表。然而,聚合生成低聚物后,尿酚的热稳定性和生物活性的变化却很少受到关注。这项研究利用硅胶柱色谱法从聚合生漆中分离出尿酚和尿酚低聚物,并对其抗菌性、抗氧化性和热稳定性进行了评估,以期降低尿酚的过敏性,增加其应用范围。通过凝胶色谱法,我们发现漆酚低聚物是聚合度为 2-5 度的聚合物。根据紫外光谱、傅立叶变换红外光谱和 1H NMR 等技术的表征结果,尿酚通过加成反应和 C-C 偶联反应转化为尿酚低聚物。研究结果表明,尿酚低聚物清除 DPPH 和 ABTS 自由基的 IC50 值分别为 40.8 和 27.4 μg/mL,对金黄色葡萄球菌和表皮葡萄球菌的最小抑制浓度分别为 250 和 125 μg/mL。尿囊素低聚物的热重差曲线峰值温度(461.8 ℃)高于尿囊素的峰值温度(239.5 ℃),表明尿囊素发生了聚合反应,热稳定性增强。研究结果为将聚合的尿酚和尿酚低聚物用于功能材料和添加剂等应用奠定了基础。
{"title":"Urushiol oligomer preparation and evaluations of their antibacterial, antioxidant, and thermal stability.","authors":"Hongxia Chen, Hao Zhou, Zhiwen Qi, Xingying Xue, Chengzhang Wang","doi":"10.1080/09205063.2024.2409483","DOIUrl":"10.1080/09205063.2024.2409483","url":null,"abstract":"<p><p>There have been studies published on the composition and coating uses of raw lacquers following enzymatic oxidative polymerization. The change of urushiol' thermal stability and biological activity following polymerization to create oligomer, however, has received little attention. This work using silica gel column chromatography to separate urushiol and urushiol oligomer from polymerized raw lacquer and assessed its antibacterial, antioxidant, and thermal stability in an effort to decrease the allergenicity of urushiol and increase its application. By using gel chromatography, the urushiol oligomer were discovered to be polymers with 2-5 degrees of polymerization. According to characterization results from techniques like UV, FT-IR, and <sup>1</sup>H NMR, urushiol was converted into urushiol oligomer by addition reactions, and C-C coupling. The findings demonstrated that the urushiol oligomer' IC<sub>50</sub> values for scavenging DPPH and ABTS free radicals were 40.8 and 27.4 μg/mL, respectively, and that their minimum inhibitory concentrations against <i>Staphylococcus aureus</i> and <i>Staphylococcus epidermidis</i> were 250 and 125 μg/mL. The urushiol oligomer's thermogravimetric differential curve peak temperature (461.8 °C) was higher than urushiol's (239.5 °C), indicating that urushiol undergoes polymerization with enhanced thermal stability. The study's findings establish a foundation for the use of polymerized urushiol and urushiol oligomer in applications including functional materials and additives.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"481-494"},"PeriodicalIF":3.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An innovative rheology analysis method applies to the formulation optimization of Panax notoginseng total saponins ocular gel. 将创新的流变分析方法应用于三七总皂苷眼用凝胶的配方优化。
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-03-01 Epub Date: 2024-09-27 DOI: 10.1080/09205063.2024.2406632
Hong Xu, Chen Zang, Fangbo Zhang, Jixiang Tian, Hua Li, Shihuan Tang, Guohua Wang

Emphasizing the viscoelasticity of ophthalmic gels is crucial for understanding the residence time, structure, and stability of hydrogels. This study primarily aimed to propose an innovative rheology analysis method for ophthalmic gels, considering complex eye movements. This method was applied to select ophthalmic gels with favorable rheological characteristics. Additionally, the physical characteristics and in vitro release of the selected Panax notoginseng total saponins (PNS) gel were demonstrated. The selected PNS gel significantly increased the activities of SOD and decreased intracellular levels of MDA, TNF-α, and IL-1β in H2O2-treated ARPE-19 cells. Finally, the optimal formulation was selected as a suitable platform for ophthalmic delivery and was shown to significantly rescue ARPE-19 cells from oxidative cellular damage.

强调眼科凝胶的粘弹性对于了解水凝胶的停留时间、结构和稳定性至关重要。本研究的主要目的是针对眼科凝胶提出一种创新的流变分析方法,同时考虑到复杂的眼球运动。该方法可用于选择具有良好流变特性的眼科凝胶。此外,研究还展示了所选三七总皂苷(PNS)凝胶的物理特性和体外释放情况。在 H2O2 处理的 ARPE-19 细胞中,所选的三七总皂甙凝胶能明显提高 SOD 活性,降低细胞内 MDA、TNF-α 和 IL-1β 的水平。最后,选择了最佳配方作为眼科给药的合适平台,并证明该配方能明显挽救 ARPE-19 细胞免受氧化性细胞损伤。
{"title":"An innovative rheology analysis method applies to the formulation optimization of Panax notoginseng total saponins ocular gel.","authors":"Hong Xu, Chen Zang, Fangbo Zhang, Jixiang Tian, Hua Li, Shihuan Tang, Guohua Wang","doi":"10.1080/09205063.2024.2406632","DOIUrl":"10.1080/09205063.2024.2406632","url":null,"abstract":"<p><p>Emphasizing the viscoelasticity of ophthalmic gels is crucial for understanding the residence time, structure, and stability of hydrogels. This study primarily aimed to propose an innovative rheology analysis method for ophthalmic gels, considering complex eye movements. This method was applied to select ophthalmic gels with favorable rheological characteristics. Additionally, the physical characteristics and <i>in vitro</i> release of the selected <i>Panax notoginseng</i> total saponins (PNS) gel were demonstrated. The selected PNS gel significantly increased the activities of SOD and decreased intracellular levels of MDA, TNF-α, and IL-1β in H<sub>2</sub>O<sub>2</sub>-treated ARPE-19 cells. Finally, the optimal formulation was selected as a suitable platform for ophthalmic delivery and was shown to significantly rescue ARPE-19 cells from oxidative cellular damage.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"462-480"},"PeriodicalIF":3.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of electric fields on the modulation of chondrocytes dynamics in gelatin scaffolds: a novel approach to optimize cartilage tissue engineering.
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-25 DOI: 10.1080/09205063.2025.2466971
Juan José Saiz Culma, Johana María Guevara Morales, Yoshie Adriana Hata Uribe, Diego Alexander Garzón-Alvarado, Sara Leal-Marin, Birgit Glasmacher, Juan Jairo Vaca-González

The treatment of degenerative pathologies affecting articular cartilage remains a significant clinical challenge. Non-invasive biophysical stimuli, such as electric fields, have demonstrated potential as therapeutic tools for cartilage tissue restoration. Previous studies have reported that electric fields enhance chondrocyte proliferation and the synthesis of key extracellular matrix components, such as glycosaminoglycans. However, inconsistencies in experimental designs have led to variable findings. This study examines the effects of capacitively coupled electric fields on chondrocytes cultured in gelatin hydrogels. Alternating voltages of 50 V (7.7 mV/cm) and 100 V (8.7 mV/cm) at a frequency of 60 kHz were applied for 21 days. Cell quantification and glycosaminoglycan analysis were performed on both stimulated and control samples. On day 7, exposure to the electric field resulted in a significant reduction in cell proliferation by 24.7% and 39.2% at 7.7 mV/cm and 8.7 mV/cm, respectively (p < 0.05). However, stimulation at 8.7 mV/cm led to a 35.7% increase in glycosaminoglycan synthesis compared to the control group (p < 0.05). These findings indicate that electric field stimulation can modulate the synthesis of essential extracellular matrix components, such as glycosaminoglycans, in hyaline cartilage. This highlights the potential of electric fields as a promising strategy to enhance outcomes in articular cartilage tissue engineering, particularly in hydrogel-based therapeutic approaches.

{"title":"Effects of electric fields on the modulation of chondrocytes dynamics in gelatin scaffolds: a novel approach to optimize cartilage tissue engineering.","authors":"Juan José Saiz Culma, Johana María Guevara Morales, Yoshie Adriana Hata Uribe, Diego Alexander Garzón-Alvarado, Sara Leal-Marin, Birgit Glasmacher, Juan Jairo Vaca-González","doi":"10.1080/09205063.2025.2466971","DOIUrl":"https://doi.org/10.1080/09205063.2025.2466971","url":null,"abstract":"<p><p>The treatment of degenerative pathologies affecting articular cartilage remains a significant clinical challenge. Non-invasive biophysical stimuli, such as electric fields, have demonstrated potential as therapeutic tools for cartilage tissue restoration. Previous studies have reported that electric fields enhance chondrocyte proliferation and the synthesis of key extracellular matrix components, such as glycosaminoglycans. However, inconsistencies in experimental designs have led to variable findings. This study examines the effects of capacitively coupled electric fields on chondrocytes cultured in gelatin hydrogels. Alternating voltages of 50 V (7.7 mV/cm) and 100 V (8.7 mV/cm) at a frequency of 60 kHz were applied for 21 days. Cell quantification and glycosaminoglycan analysis were performed on both stimulated and control samples. On day 7, exposure to the electric field resulted in a significant reduction in cell proliferation by 24.7% and 39.2% at 7.7 mV/cm and 8.7 mV/cm, respectively (<i>p</i> < 0.05). However, stimulation at 8.7 mV/cm led to a 35.7% increase in glycosaminoglycan synthesis compared to the control group (<i>p</i> < 0.05). These findings indicate that electric field stimulation can modulate the synthesis of essential extracellular matrix components, such as glycosaminoglycans, in hyaline cartilage. This highlights the potential of electric fields as a promising strategy to enhance outcomes in articular cartilage tissue engineering, particularly in hydrogel-based therapeutic approaches.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-20"},"PeriodicalIF":3.6,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143491963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrative computational and experimental study of propolis, polyvinyl alcohol, and alhagi maurorum complex as anticancer and antibacterial agents.
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-24 DOI: 10.1080/09205063.2025.2464448
Asra Ali Hussein, Nisreen Kaddim Radi, Nebras Mohammed Sahi

The study examined the potential applications of propolis, polyvinyl alcohol (PVA), and Alhagi maurorum extracts in drug delivery systems, utilizing both computer and lab methods. The study uses molecular docking probes along with DFT (density functional theory) to investigate molecular interactions and examine the binding of drugs to carrier materials. The HOMO (Highest Occupied Molecular Orbital)-LUMO (Lowest Occupied Molecular Orbital) gap for the mix of PVA, galangin, and triterpene glycoside is -0.07621 eV, which matches the experiment results. This small gap enhances responsiveness in drug delivery applications, which is crucial for successful interactions with biological targets. It's possible that a delivery system that combines galangin and triterpene glycosides would work better and be more compatible with living things.The experimental results of the Methyl Thiazole Tetrazolium (MTT) show consistent findings: The viability of MCF7, a human breast cancer cell line, significantly decreased at all concentrations of propolis and polyvinyl alcohol compared to WRL68, a fetal liver cell line. Within-group comparisons showed less viability in both groups at 400 µg/ml. Mean ± SD: 42.05267 ± 1.951655; 67.12533 ± 7.401263.In the positive control group, the average number of malignant cells was 47.06, but the average number of cells in the fourth treatment (Propolis + PVA) and the third combination (Propolis + Alhagi maurorum + PVA) were 42.05267 and 42.97800, respectively. The Sustainable Development Goals in Industry and Innovation are focusing on developing a new combination of alhagi and propolis using PVA as a polymer carrier.

{"title":"Integrative computational and experimental study of propolis, polyvinyl alcohol, and alhagi maurorum complex as anticancer and antibacterial agents.","authors":"Asra Ali Hussein, Nisreen Kaddim Radi, Nebras Mohammed Sahi","doi":"10.1080/09205063.2025.2464448","DOIUrl":"https://doi.org/10.1080/09205063.2025.2464448","url":null,"abstract":"<p><p>The study examined the potential applications of propolis, polyvinyl alcohol (PVA), and Alhagi maurorum extracts in drug delivery systems, utilizing both computer and lab methods. The study uses molecular docking probes along with DFT (density functional theory) to investigate molecular interactions and examine the binding of drugs to carrier materials. The HOMO (Highest Occupied Molecular Orbital)-LUMO (Lowest Occupied Molecular Orbital) gap for the mix of PVA, galangin, and triterpene glycoside is -0.07621 eV, which matches the experiment results. This small gap enhances responsiveness in drug delivery applications, which is crucial for successful interactions with biological targets. It's possible that a delivery system that combines galangin and triterpene glycosides would work better and be more compatible with living things.The experimental results of the Methyl Thiazole Tetrazolium (MTT) show consistent findings: The viability of MCF7, a human breast cancer cell line, significantly decreased at all concentrations of propolis and polyvinyl alcohol compared to WRL68, a fetal liver cell line. Within-group comparisons showed less viability in both groups at 400 µg/ml. Mean ± SD: 42.05267 ± 1.951655; 67.12533 ± 7.401263.In the positive control group, the average number of malignant cells was 47.06, but the average number of cells in the fourth treatment (Propolis + PVA) and the third combination (Propolis + Alhagi maurorum + PVA) were 42.05267 and 42.97800, respectively. The Sustainable Development Goals in Industry and Innovation are focusing on developing a new combination of alhagi and propolis using PVA as a polymer carrier.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-31"},"PeriodicalIF":3.6,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143482695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An update on implication of POSS-based nanocomposites in bone tissue engineering: a review.
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-18 DOI: 10.1080/09205063.2025.2455234
Leyla Bagheri, Davoud Jafari-Gharabaghlou, Mohammad-Reza Dashti, Nosratollah Zarghami

The science of Bone tissue engineering (TE) is quickly progressing. Engineering bone usually applications a synthetic extracellular matrix, cells or osteoblasts that can convert to osteoblasts, and adjusting causes that boost adhesion, distinction, and mineralized bone construction of cells. Extremely porous scaffolds perform an important character in cell planting, propagation, and fresh 3D-tissue construction. Reformative medicine and tissue engineering track a multi-disciplinary approach for the novel substances' development and appliance, to the various tissue defects therapy. The presentation of polyhedral oligomeric silsesquioxane (POSS) in the bio-polymeric scaffold has been shown to develop the biotic attributes of the hybrid combinations. This review focuses on the influence of POSS within the Chitosan (CS), Hydroxyapatite (HA), and zeolite matrixes, scaffold drawing, and the advantages and limitations of the materials mentioned for tissue engineering of bone.

{"title":"An update on implication of POSS-based nanocomposites in bone tissue engineering: a review.","authors":"Leyla Bagheri, Davoud Jafari-Gharabaghlou, Mohammad-Reza Dashti, Nosratollah Zarghami","doi":"10.1080/09205063.2025.2455234","DOIUrl":"https://doi.org/10.1080/09205063.2025.2455234","url":null,"abstract":"<p><p>The science of Bone tissue engineering (TE) is quickly progressing. Engineering bone usually applications a synthetic extracellular matrix, cells or osteoblasts that can convert to osteoblasts, and adjusting causes that boost adhesion, distinction, and mineralized bone construction of cells. Extremely porous scaffolds perform an important character in cell planting, propagation, and fresh 3D-tissue construction. Reformative medicine and tissue engineering track a multi-disciplinary approach for the novel substances' development and appliance, to the various tissue defects therapy. The presentation of polyhedral oligomeric silsesquioxane (POSS) in the bio-polymeric scaffold has been shown to develop the biotic attributes of the hybrid combinations. This review focuses on the influence of POSS within the Chitosan (CS), Hydroxyapatite (HA), and zeolite matrixes, scaffold drawing, and the advantages and limitations of the materials mentioned for tissue engineering of bone.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-24"},"PeriodicalIF":3.6,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silk fibroin thermosensitive polymers: Osteogenic, anti-inflammatory, and angiogenic effects for osteomyelitis treatment.
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-16 DOI: 10.1080/09205063.2025.2458887
Pavarish Jantorn, Chayanee Noosak, Khanin Iamthanaporn, Dennapa Saeloh Sotthibandhu

Infectious bone defects pose a significant challenge in orthopedics by hindering healing and vascularization. This study explored the impact of fibroin thermosensitive hydrogel on osteogenesis, inflammatory response, and angiogenesis as a potential biomaterial for bone regeneration in osteomyelitis treatment. The biocompatibility of the hydrogel by live/dead staining revealed a high number of viable osteoblast cells after 14 days. ALP activity was significantly increased in all hydrogel formulations, with F3 showing the highest levels of total protein content and calcium deposition, indicating more effective osteogenesis. Gene expression analysis of the osteogenesis-related genes demonstrated that RUNX2 was upregulated by day 7, followed by increased expressions of the OCN and COL-1 genes at later stages. The inflammatory response to F3 was assessed by measuring the nitric oxide (NO) production and pro-inflammatory gene expression in LPS-stimulated RAW 264.7 macrophages. The F3 formulation significantly reduced NO production and iNOS expression, suggesting selective inhibition of the inflammatory pathway. The VEGF-loaded F3 formulation exhibited substantial angiogenic potential, enhancing HUVEC cell proliferation by 140% over 48 h. The osteogenic, anti-inflammatory, and angiogenic effects shown by the F3 formulation were well-suited for applications in osteomyelitis treatment.

{"title":"Silk fibroin thermosensitive polymers: Osteogenic, anti-inflammatory, and angiogenic effects for osteomyelitis treatment.","authors":"Pavarish Jantorn, Chayanee Noosak, Khanin Iamthanaporn, Dennapa Saeloh Sotthibandhu","doi":"10.1080/09205063.2025.2458887","DOIUrl":"https://doi.org/10.1080/09205063.2025.2458887","url":null,"abstract":"<p><p>Infectious bone defects pose a significant challenge in orthopedics by hindering healing and vascularization. This study explored the impact of fibroin thermosensitive hydrogel on osteogenesis, inflammatory response, and angiogenesis as a potential biomaterial for bone regeneration in osteomyelitis treatment. The biocompatibility of the hydrogel by live/dead staining revealed a high number of viable osteoblast cells after 14 days. ALP activity was significantly increased in all hydrogel formulations, with F3 showing the highest levels of total protein content and calcium deposition, indicating more effective osteogenesis. Gene expression analysis of the osteogenesis-related genes demonstrated that <i>RUNX2</i> was upregulated by day 7, followed by increased expressions of the <i>OCN</i> and <i>COL-1</i> genes at later stages. The inflammatory response to F3 was assessed by measuring the nitric oxide (NO) production and pro-inflammatory gene expression in LPS-stimulated RAW 264.7 macrophages. The F3 formulation significantly reduced NO production and <i>iNOS</i> expression, suggesting selective inhibition of the inflammatory pathway. The VEGF-loaded F3 formulation exhibited substantial angiogenic potential, enhancing HUVEC cell proliferation by 140% over 48 h. The osteogenic, anti-inflammatory, and angiogenic effects shown by the F3 formulation were well-suited for applications in osteomyelitis treatment.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-17"},"PeriodicalIF":3.6,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multifunctional biomimetic double-layer composite hydrogel with wet adhesion and antioxidant activity for dural repair.
IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-10 DOI: 10.1080/09205063.2025.2460373
Shui Guan, Chang Sun, Chuzhou Wen, Bing Yao, Jianqiang Xu, Changkai Sun

Cerebrospinal fluid (CSF) leakage caused by accidents or diseases resulting from traumatic brain injury, inflammation, tumor erosion and surgery can lead to many complications. In this study, a multifunctional composite double-layer hydrogel was designed by simulating the structure of native dura mater, which was composed of polyacrylic acid (PAA), polyethyleneimine (PEI), sodium alginate (SA), β-cyclodextrin (β-CD) and edaravone (Ed). The PAA/PEI layer had strong wet adhesion characteristics, while the PEI/SA@β-CD/Ed layer exhibited significant antioxidant, drug release and biocompatibility properties. By controlling the concentration of Ca2+, the gelation time can be adjusted rapidly within 95-215 s. Specifically, the final PAA/PEI/SA@β-CD/Ed composite hydrogel exhibited a porous network structure with high porosity and low swelling rate, improved tensile strength, sufficient biodegradability, favourable adhesion performance, enhanced DPPH and ABTS radicals scavenging abilities, and sustained Ed release capacity. In addition, the resulting hydrogel also showed excellent biocompatibility and protective effect on H2O2-induced oxidative damage in SH-SY5Y cells. These results preliminarily suggested that the PAA/PEI/SA@β-CD/Ed composite hydrogel would appear to be a promising candidate for dural repair.

{"title":"A multifunctional biomimetic double-layer composite hydrogel with wet adhesion and antioxidant activity for dural repair.","authors":"Shui Guan, Chang Sun, Chuzhou Wen, Bing Yao, Jianqiang Xu, Changkai Sun","doi":"10.1080/09205063.2025.2460373","DOIUrl":"https://doi.org/10.1080/09205063.2025.2460373","url":null,"abstract":"<p><p>Cerebrospinal fluid (CSF) leakage caused by accidents or diseases resulting from traumatic brain injury, inflammation, tumor erosion and surgery can lead to many complications. In this study, a multifunctional composite double-layer hydrogel was designed by simulating the structure of native dura mater, which was composed of polyacrylic acid (PAA), polyethyleneimine (PEI), sodium alginate (SA), β-cyclodextrin (β-CD) and edaravone (Ed). The PAA/PEI layer had strong wet adhesion characteristics, while the PEI/SA@β-CD/Ed layer exhibited significant antioxidant, drug release and biocompatibility properties. By controlling the concentration of Ca<sup>2+</sup>, the gelation time can be adjusted rapidly within 95-215 s. Specifically, the final PAA/PEI/SA@β-CD/Ed composite hydrogel exhibited a porous network structure with high porosity and low swelling rate, improved tensile strength, sufficient biodegradability, favourable adhesion performance, enhanced DPPH and ABTS radicals scavenging abilities, and sustained Ed release capacity. In addition, the resulting hydrogel also showed excellent biocompatibility and protective effect on H<sub>2</sub>O<sub>2</sub>-induced oxidative damage in SH-SY5Y cells. These results preliminarily suggested that the PAA/PEI/SA@β-CD/Ed composite hydrogel would appear to be a promising candidate for dural repair.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-22"},"PeriodicalIF":3.6,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomaterials Science, Polymer Edition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1