{"title":"DCEM: A deep complementary energy method for linear elasticity","authors":"Yizheng Wang, Jia Sun, Timon Rabczuk, Yinghua Liu","doi":"10.1002/nme.7585","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the rapid advancement of deep learning has significantly impacted various fields, particularly in solving partial differential equations (PDEs) in the realm of solid mechanics, benefiting greatly from the remarkable approximation capabilities of neural networks. In solving PDEs, physics-informed neural networks (PINNs) and the deep energy method (DEM) have garnered substantial attention. The principle of minimum potential energy and complementary energy are two important variational principles in solid mechanics. However, the well-known DEM is based on the principle of minimum potential energy, but it lacks the important form of minimum complementary energy. To bridge this gap, we propose the deep complementary energy method (DCEM) based on the principle of minimum complementary energy. The output function of DCEM is the stress function, which inherently satisfies the equilibrium equation. We present numerical results of classical linear elasticity using the Prandtl and Airy stress functions, and compare DCEM with existing PINNs and DEM algorithms when modeling representative mechanical problems. The results demonstrate that DCEM outperforms DEM in terms of stress accuracy and efficiency and has an advantage in dealing with complex displacement boundary conditions, which is supported by theoretical analyses and numerical simulations. We extend DCEM to DCEM-Plus (DCEM-P), adding terms that satisfy PDEs. Furthermore, we propose a deep complementary energy operator method (DCEM-O) by combining operator learning with physical equations. Initially, we train DCEM-O using high-fidelity numerical results and then incorporate complementary energy. DCEM-P and DCEM-O further enhance the accuracy and efficiency of DCEM.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"125 24","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7585","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the rapid advancement of deep learning has significantly impacted various fields, particularly in solving partial differential equations (PDEs) in the realm of solid mechanics, benefiting greatly from the remarkable approximation capabilities of neural networks. In solving PDEs, physics-informed neural networks (PINNs) and the deep energy method (DEM) have garnered substantial attention. The principle of minimum potential energy and complementary energy are two important variational principles in solid mechanics. However, the well-known DEM is based on the principle of minimum potential energy, but it lacks the important form of minimum complementary energy. To bridge this gap, we propose the deep complementary energy method (DCEM) based on the principle of minimum complementary energy. The output function of DCEM is the stress function, which inherently satisfies the equilibrium equation. We present numerical results of classical linear elasticity using the Prandtl and Airy stress functions, and compare DCEM with existing PINNs and DEM algorithms when modeling representative mechanical problems. The results demonstrate that DCEM outperforms DEM in terms of stress accuracy and efficiency and has an advantage in dealing with complex displacement boundary conditions, which is supported by theoretical analyses and numerical simulations. We extend DCEM to DCEM-Plus (DCEM-P), adding terms that satisfy PDEs. Furthermore, we propose a deep complementary energy operator method (DCEM-O) by combining operator learning with physical equations. Initially, we train DCEM-O using high-fidelity numerical results and then incorporate complementary energy. DCEM-P and DCEM-O further enhance the accuracy and efficiency of DCEM.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.