Entropy production-based nonlinear optimal perturbation for subsonic flows around an airfoil

IF 4.1 2区 工程技术 Q1 MECHANICS Physics of Fluids Pub Date : 2024-09-17 DOI:10.1063/5.0220442
Nobutaka Taniguchi, Yuya Ohmichi, Kojiro Suzuki
{"title":"Entropy production-based nonlinear optimal perturbation for subsonic flows around an airfoil","authors":"Nobutaka Taniguchi, Yuya Ohmichi, Kojiro Suzuki","doi":"10.1063/5.0220442","DOIUrl":null,"url":null,"abstract":"The extraction and time evolution of optimal perturbation (OP) offers abundant physical insights in fluid dynamics. Nonlinear OP (NLOP) analysis provides an approach for obtaining the trajectory to induce the maximum changes in the flow field. In an extension into unsteady flow field, we tracked the changes of trajectory by an application of initial perturbation field in the compressible Navier–Stokes equation, and we focused on the entropy production (EP) to characterize the trajectory. We proposed entropy production-based NLOP (EP-NLOP) analysis for compressible flows and investigated the effect of evaluation function on the extracted Ops using the subsonic flow around an airfoil. Compared with the conventional disturbance energy (DE-) based NLOP (DE-NLOP) analysis, we demonstrated that the OPs with different spatial wavelength and concentration regions were successfully extracted due to the different spatial sensitivity of evaluation function. In the EP-NLOP analysis, the spatial distribution of OP extracted the larger energy dissipation upstream of the separation points for the short evaluation time. For the long evaluation time, EP-NLOP analysis extracted the transient-time evolution of interacting separation vortices, attributing the multiple wavelengths of OPs. These differences in the OPs offer promising insights into fluid dynamics.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"16 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0220442","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The extraction and time evolution of optimal perturbation (OP) offers abundant physical insights in fluid dynamics. Nonlinear OP (NLOP) analysis provides an approach for obtaining the trajectory to induce the maximum changes in the flow field. In an extension into unsteady flow field, we tracked the changes of trajectory by an application of initial perturbation field in the compressible Navier–Stokes equation, and we focused on the entropy production (EP) to characterize the trajectory. We proposed entropy production-based NLOP (EP-NLOP) analysis for compressible flows and investigated the effect of evaluation function on the extracted Ops using the subsonic flow around an airfoil. Compared with the conventional disturbance energy (DE-) based NLOP (DE-NLOP) analysis, we demonstrated that the OPs with different spatial wavelength and concentration regions were successfully extracted due to the different spatial sensitivity of evaluation function. In the EP-NLOP analysis, the spatial distribution of OP extracted the larger energy dissipation upstream of the separation points for the short evaluation time. For the long evaluation time, EP-NLOP analysis extracted the transient-time evolution of interacting separation vortices, attributing the multiple wavelengths of OPs. These differences in the OPs offer promising insights into fluid dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚音速机翼周围流动的基于熵产生的非线性优化扰动
最优扰动(OP)的提取和时间演化为流体动力学提供了丰富的物理启示。非线性最优扰动(NLOP)分析提供了一种获取轨迹的方法,以引起流场的最大变化。在向非稳态流场的扩展中,我们通过在可压缩 Navier-Stokes 方程中应用初始扰动场来跟踪轨迹的变化,并重点关注熵产生(EP)来表征轨迹。我们针对可压缩流提出了基于熵产生的 NLOP(EP-NLOP)分析,并以亚音速机翼周围流为例研究了评价函数对提取的 Ops 的影响。与传统的基于扰动能量(DE-)的 NLOP(DE-NLOP)分析相比,由于评价函数的空间敏感性不同,我们证明成功提取了不同空间波长和浓度区域的 OPs。在 EP-NLOP 分析中,在短评估时间内,OP 的空间分布提取了分离点上游较大的能量耗散。在较长的评估时间内,EP-NLOP 分析提取了相互作用的分离涡旋的瞬时演变,这归因于 OP 的多个波长。OPs 的这些差异为流体动力学提供了很好的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
期刊最新文献
The impact of blood viscosity modeling on computational fluid dynamic simulations of pediatric patients with Fontan circulation. Meso-scale investigation on the permeability of frozen soils with the lattice Boltzmann method Computational investigation of both geometric and fluidic compressible turbulent thrust vectoring, using a Coanda based nozzle Directional self-migration of droplets on an inclined surface driven by wettability gradient Overlapping effect of detonation driving during multi-point initiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1