Hydrodynamic stability of magnetic boundary layer flow of viscoelastic Walters' liquid B embedded in a porous medium

IF 4.1 2区 工程技术 Q1 MECHANICS Physics of Fluids Pub Date : 2024-09-17 DOI:10.1063/5.0222210
H. Amrutha, Shashi Prabha Gogate S.
{"title":"Hydrodynamic stability of magnetic boundary layer flow of viscoelastic Walters' liquid B embedded in a porous medium","authors":"H. Amrutha, Shashi Prabha Gogate S.","doi":"10.1063/5.0222210","DOIUrl":null,"url":null,"abstract":"The present study investigates the linear stability of stagnation boundary layer flow of viscoelastic Walters' liquid B in the presence of magnetic field and porous medium by solving modified Orr–Sommerfeld equation numerically using the Chebyshev collocation method. The model is characterized mainly by the elasticity number (E), the magnetic number (Q), and the permeability parameter (K) in addition to the Reynolds number(Re). The Prandtl boundary layer equations derived for the present model are converted through appropriate similarity transformations, to an ordinary differential equation whose solution describes the velocity, which has oscillatory behavior. The solution of generalized eigenvalue problem governing the stability of the boundary layer has an interesting eigenspectrum. The spectra for different values of E, K, and Q are shown to be a continuation of Newtonian eigenspectrum with the instability belongs to viscoelastic wall mode for certain range of parameters. It is shown that the role of elasticity number is to destabilize the viscoelastic boundary layer flow, whereas both magnetic field and porous medium have the stabilizing effect on the flow. These interesting features are further confirmed by performing the energy budget analysis on the perturbed quantities. Region of negative production due to the Reynolds stress as well as production due to viscous dissipation and viscoelastic contributions in the positive region, and there is reduction in the growth rate of kinetic energy that causes stability. Other physical mechanisms related to flow stability are discussed in detail.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"1 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0222210","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The present study investigates the linear stability of stagnation boundary layer flow of viscoelastic Walters' liquid B in the presence of magnetic field and porous medium by solving modified Orr–Sommerfeld equation numerically using the Chebyshev collocation method. The model is characterized mainly by the elasticity number (E), the magnetic number (Q), and the permeability parameter (K) in addition to the Reynolds number(Re). The Prandtl boundary layer equations derived for the present model are converted through appropriate similarity transformations, to an ordinary differential equation whose solution describes the velocity, which has oscillatory behavior. The solution of generalized eigenvalue problem governing the stability of the boundary layer has an interesting eigenspectrum. The spectra for different values of E, K, and Q are shown to be a continuation of Newtonian eigenspectrum with the instability belongs to viscoelastic wall mode for certain range of parameters. It is shown that the role of elasticity number is to destabilize the viscoelastic boundary layer flow, whereas both magnetic field and porous medium have the stabilizing effect on the flow. These interesting features are further confirmed by performing the energy budget analysis on the perturbed quantities. Region of negative production due to the Reynolds stress as well as production due to viscous dissipation and viscoelastic contributions in the positive region, and there is reduction in the growth rate of kinetic energy that causes stability. Other physical mechanisms related to flow stability are discussed in detail.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔介质中嵌入粘弹性沃尔特斯液体 B 的磁边界层流动的流体力学稳定性
本研究通过使用切比雪夫配位法数值求解修正的 Orr-Sommerfeld 方程,研究了粘弹性 Walters' 液体 B 在磁场和多孔介质存在下的停滞边界层流动的线性稳定性。除雷诺数(Re)外,该模型的主要特征是弹性数(E)、磁性数(Q)和渗透性参数(K)。为本模型导出的普朗特边界层方程通过适当的相似变换转换成常微分方程,其解描述了具有振荡行为的速度。边界层稳定性的广义特征值问题的解具有有趣的特征谱。不同 E、K 和 Q 值的谱图是牛顿特征谱图的延续,在一定参数范围内,不稳定性属于粘弹性壁面模式。结果表明,弹性数的作用是破坏粘弹性边界层流动的稳定性,而磁场和多孔介质对流动都有稳定作用。通过对扰动量进行能量预算分析,进一步证实了这些有趣的特征。雷诺应力产生的负能量区域以及粘性耗散和粘弹性贡献产生的正能量区域,动能增长率降低,从而导致稳定。还详细讨论了与流动稳定性有关的其他物理机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
期刊最新文献
The impact of blood viscosity modeling on computational fluid dynamic simulations of pediatric patients with Fontan circulation. Meso-scale investigation on the permeability of frozen soils with the lattice Boltzmann method Computational investigation of both geometric and fluidic compressible turbulent thrust vectoring, using a Coanda based nozzle Directional self-migration of droplets on an inclined surface driven by wettability gradient Overlapping effect of detonation driving during multi-point initiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1