High-order Accurate Entropy Stable Schemes for Relativistic Hydrodynamics with General Synge-type Equation of State

Linfeng Xu, Shengrong Ding, Kailiang Wu
{"title":"High-order Accurate Entropy Stable Schemes for Relativistic Hydrodynamics with General Synge-type Equation of State","authors":"Linfeng Xu, Shengrong Ding, Kailiang Wu","doi":"arxiv-2409.10872","DOIUrl":null,"url":null,"abstract":"All the existing entropy stable (ES) schemes for relativistic hydrodynamics\n(RHD) in the literature were restricted to the ideal equation of state (EOS),\nwhich however is often a poor approximation for most relativistic flows due to\nits inconsistency with the relativistic kinetic theory. This paper develops\nhigh-order ES finite difference schemes for RHD with general Synge-type EOS,\nwhich encompasses a range of special EOSs. We first establish an entropy pair\nfor the RHD equations with general Synge-type EOS in any space dimensions. We\nrigorously prove that the found entropy function is strictly convex and derive\nthe associated entropy variables, laying the foundation for designing entropy\nconservative (EC) and ES schemes. Due to relativistic effects, one cannot\nexplicitly express primitive variables, fluxes, and entropy variables in terms\nof conservative variables. Consequently, this highly complicates the analysis\nof the entropy structure of the RHD equations, the investigation of entropy\nconvexity, and the construction of EC numerical fluxes. By using a suitable set\nof parameter variables, we construct novel two-point EC fluxes in a unified\nform for general Synge-type EOS. We obtain high-order EC schemes through linear\ncombinations of the two-point EC fluxes. Arbitrarily high-order accurate ES\nschemes are achieved by incorporating dissipation terms into the EC schemes,\nbased on (weighted) essentially non-oscillatory reconstructions. Additionally,\nwe derive the general dissipation matrix for general Synge-type EOS based on\nthe scaled eigenvectors of the RHD system. We also define a suitable average of\nthe dissipation matrix at the cell interfaces to ensure that the resulting ES\nschemes can resolve stationary contact discontinuities accurately. Several\nnumerical examples are provided to validate the accuracy and effectiveness of\nour schemes for RHD with four special EOSs.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

All the existing entropy stable (ES) schemes for relativistic hydrodynamics (RHD) in the literature were restricted to the ideal equation of state (EOS), which however is often a poor approximation for most relativistic flows due to its inconsistency with the relativistic kinetic theory. This paper develops high-order ES finite difference schemes for RHD with general Synge-type EOS, which encompasses a range of special EOSs. We first establish an entropy pair for the RHD equations with general Synge-type EOS in any space dimensions. We rigorously prove that the found entropy function is strictly convex and derive the associated entropy variables, laying the foundation for designing entropy conservative (EC) and ES schemes. Due to relativistic effects, one cannot explicitly express primitive variables, fluxes, and entropy variables in terms of conservative variables. Consequently, this highly complicates the analysis of the entropy structure of the RHD equations, the investigation of entropy convexity, and the construction of EC numerical fluxes. By using a suitable set of parameter variables, we construct novel two-point EC fluxes in a unified form for general Synge-type EOS. We obtain high-order EC schemes through linear combinations of the two-point EC fluxes. Arbitrarily high-order accurate ES schemes are achieved by incorporating dissipation terms into the EC schemes, based on (weighted) essentially non-oscillatory reconstructions. Additionally, we derive the general dissipation matrix for general Synge-type EOS based on the scaled eigenvectors of the RHD system. We also define a suitable average of the dissipation matrix at the cell interfaces to ensure that the resulting ES schemes can resolve stationary contact discontinuities accurately. Several numerical examples are provided to validate the accuracy and effectiveness of our schemes for RHD with four special EOSs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有一般辛格型状态方程的相对论流体力学的高阶精确熵稳定方案
现有文献中所有相对论流体力学(RHD)的熵稳定(ES)方案都局限于理想状态方程(EOS),但由于其与相对论动力学理论不一致,对于大多数相对论流来说,理想状态方程往往是一个较差的近似值。本文为具有一般 Synge 型 EOS 的 RHD 开发了高阶 ES 有限差分方案,其中包括一系列特殊的 EOS。我们首先建立了任意空间维度下具有一般 Synge 型 EOS 的 RHD 方程的熵对。我们有力地证明了所发现的熵函数是严格凸函数,并推导出了相关的熵变量,为设计熵保守(EC)和 ES 方案奠定了基础。由于相对论效应,我们无法用保守变量来明确表达原始变量、通量和熵变量。因此,这使得 RHD 方程的熵结构分析、熵凸性研究和 EC 数值通量的构建变得非常复杂。通过使用合适的参数变量集,我们以统一的形式构建了适用于一般 Synge 型 EOS 的新型两点 EC 通量。我们通过两点欧共体通量的线性组合获得高阶欧共体方案。通过将耗散项纳入基于(加权)基本非振荡重构的 EC 方案,实现了任意高阶精确 ES 方案。此外,我们还根据 RHD 系统的比例特征向量,推导出了一般 Synge 型 EOS 的一般耗散矩阵。我们还定义了单元界面处耗散矩阵的适当平均值,以确保所得到的 ES 方案能够准确地解决静态接触不连续性问题。我们提供了几个数值示例来验证我们的方案对于具有四种特殊 EOS 的 RHD 的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations Conditions aux limites fortement non lin{é}aires pour les {é}quations d'Euler de la dynamique des gaz Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals A novel Mortar Method Integration using Radial Basis Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1