Physics-Informed Tailored Finite Point Operator Network for Parametric Interface Problems

Ting Du, Xianliang Xu, Wang Kong, Ye Li, Zhongyi Huang
{"title":"Physics-Informed Tailored Finite Point Operator Network for Parametric Interface Problems","authors":"Ting Du, Xianliang Xu, Wang Kong, Ye Li, Zhongyi Huang","doi":"arxiv-2409.10284","DOIUrl":null,"url":null,"abstract":"Learning operators for parametric partial differential equations (PDEs) using\nneural networks has gained significant attention in recent years. However,\nstandard approaches like Deep Operator Networks (DeepONets) require extensive\nlabeled data, and physics-informed DeepONets encounter training challenges. In\nthis paper, we introduce a novel physics-informed tailored finite point\noperator network (PI-TFPONet) method to solve parametric interface problems\nwithout the need for labeled data. Our method fully leverages the prior\nphysical information of the problem, eliminating the need to include the PDE\nresidual in the loss function, thereby avoiding training challenges. The\nPI-TFPONet is specifically designed to address certain properties of the\nproblem, allowing us to naturally obtain an approximate solution that closely\nmatches the exact solution. Our method is theoretically proven to converge if\nthe local mesh size is sufficiently small and the training loss is minimized.\nNotably, our approach is uniformly convergent for singularly perturbed\ninterface problems. Extensive numerical studies show that our unsupervised\nPI-TFPONet is comparable to or outperforms existing state-of-the-art supervised\ndeep operator networks in terms of accuracy and versatility.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning operators for parametric partial differential equations (PDEs) using neural networks has gained significant attention in recent years. However, standard approaches like Deep Operator Networks (DeepONets) require extensive labeled data, and physics-informed DeepONets encounter training challenges. In this paper, we introduce a novel physics-informed tailored finite point operator network (PI-TFPONet) method to solve parametric interface problems without the need for labeled data. Our method fully leverages the prior physical information of the problem, eliminating the need to include the PDE residual in the loss function, thereby avoiding training challenges. The PI-TFPONet is specifically designed to address certain properties of the problem, allowing us to naturally obtain an approximate solution that closely matches the exact solution. Our method is theoretically proven to converge if the local mesh size is sufficiently small and the training loss is minimized. Notably, our approach is uniformly convergent for singularly perturbed interface problems. Extensive numerical studies show that our unsupervised PI-TFPONet is comparable to or outperforms existing state-of-the-art supervised deep operator networks in terms of accuracy and versatility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对参数化界面问题的物理信息定制有限点算子网络
近年来,利用神经网络学习参数偏微分方程(PDEs)的算子已受到广泛关注。然而,像深度算子网络(DeepONets)这样的标准方法需要大量标记数据,而物理信息型深度算子网络则会遇到训练难题。在本文中,我们介绍了一种新颖的物理信息定制有限点算子网络(PI-TFPONet)方法,无需标注数据即可解决参数接口问题。我们的方法充分利用了问题的先验物理信息,无需在损失函数中包含 PDEresidual,从而避免了训练难题。PI-TFPONet专为解决该问题的某些特性而设计,使我们能够自然地获得与精确解相近的近似解。值得注意的是,我们的方法对于奇异扰动界面问题是均匀收敛的。广泛的数值研究表明,我们的无监督PI-TFPONet在精度和通用性方面可与现有的最先进的监督深度算子网络相媲美,甚至更胜一筹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations Conditions aux limites fortement non lin{é}aires pour les {é}quations d'Euler de la dynamique des gaz Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals A novel Mortar Method Integration using Radial Basis Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1