Kernel Descent -- a Novel Optimizer for Variational Quantum Algorithms

Lars Simon, Holger Eble, Manuel Radons
{"title":"Kernel Descent -- a Novel Optimizer for Variational Quantum Algorithms","authors":"Lars Simon, Holger Eble, Manuel Radons","doi":"arxiv-2409.10257","DOIUrl":null,"url":null,"abstract":"In recent years, variational quantum algorithms have garnered significant\nattention as a candidate approach for near-term quantum advantage using noisy\nintermediate-scale quantum (NISQ) devices. In this article we introduce kernel\ndescent, a novel algorithm for minimizing the functions underlying variational\nquantum algorithms. We compare kernel descent to existing methods and carry out\nextensive experiments to demonstrate its effectiveness. In particular, we\nshowcase scenarios in which kernel descent outperforms gradient descent and\nquantum analytic descent. The algorithm follows the well-established scheme of\niteratively computing classical local approximations to the objective function\nand subsequently executing several classical optimization steps with respect to\nthe former. Kernel descent sets itself apart with its employment of reproducing\nkernel Hilbert space techniques in the construction of the local approximations\n-- which leads to the observed advantages.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, variational quantum algorithms have garnered significant attention as a candidate approach for near-term quantum advantage using noisy intermediate-scale quantum (NISQ) devices. In this article we introduce kernel descent, a novel algorithm for minimizing the functions underlying variational quantum algorithms. We compare kernel descent to existing methods and carry out extensive experiments to demonstrate its effectiveness. In particular, we showcase scenarios in which kernel descent outperforms gradient descent and quantum analytic descent. The algorithm follows the well-established scheme of iteratively computing classical local approximations to the objective function and subsequently executing several classical optimization steps with respect to the former. Kernel descent sets itself apart with its employment of reproducing kernel Hilbert space techniques in the construction of the local approximations -- which leads to the observed advantages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核后裔 -- 变量量子算法的新型优化器
近年来,变量子算法作为一种利用噪声中量子(NISQ)器件实现近期量子优势的候选方法,受到了广泛关注。在本文中,我们介绍了内核下降算法(kerneldescent),这是一种用于最小化变量子算法基础函数的新型算法。我们将内核下降与现有方法进行了比较,并开展了大量实验来证明其有效性。我们特别展示了内核下降优于梯度下降和量子解析下降的案例。该算法沿用了成熟的方案,即先计算目标函数的经典局部近似值,然后针对前者执行几个经典优化步骤。核下降算法与众不同之处在于,它在构建局部近似值时采用了重现核希尔伯特空间技术,从而获得了所观察到的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations Conditions aux limites fortement non lin{é}aires pour les {é}quations d'Euler de la dynamique des gaz Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals A novel Mortar Method Integration using Radial Basis Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1