Generalizability of Graph Neural Network Force Fields for Predicting Solid-State Properties

Shaswat Mohanty, Yifan Wang, Wei Cai
{"title":"Generalizability of Graph Neural Network Force Fields for Predicting Solid-State Properties","authors":"Shaswat Mohanty, Yifan Wang, Wei Cai","doi":"arxiv-2409.09931","DOIUrl":null,"url":null,"abstract":"Machine-learned force fields (MLFFs) promise to offer a computationally\nefficient alternative to ab initio simulations for complex molecular systems.\nHowever, ensuring their generalizability beyond training data is crucial for\ntheir wide application in studying solid materials. This work investigates the\nability of a graph neural network (GNN)-based MLFF, trained on Lennard-Jones\nArgon, to describe solid-state phenomena not explicitly included during\ntraining. We assess the MLFF's performance in predicting phonon density of\nstates (PDOS) for a perfect face-centered cubic (FCC) crystal structure at both\nzero and finite temperatures. Additionally, we evaluate vacancy migration rates\nand energy barriers in an imperfect crystal using direct molecular dynamics\n(MD) simulations and the string method. Notably, vacancy configurations were\nabsent from the training data. Our results demonstrate the MLFF's capability to\ncapture essential solid-state properties with good agreement to reference data,\neven for unseen configurations. We further discuss data engineering strategies\nto enhance the generalizability of MLFFs. The proposed set of benchmark tests\nand workflow for evaluating MLFF performance in describing perfect and\nimperfect crystals pave the way for reliable application of MLFFs in studying\ncomplex solid-state materials.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine-learned force fields (MLFFs) promise to offer a computationally efficient alternative to ab initio simulations for complex molecular systems. However, ensuring their generalizability beyond training data is crucial for their wide application in studying solid materials. This work investigates the ability of a graph neural network (GNN)-based MLFF, trained on Lennard-Jones Argon, to describe solid-state phenomena not explicitly included during training. We assess the MLFF's performance in predicting phonon density of states (PDOS) for a perfect face-centered cubic (FCC) crystal structure at both zero and finite temperatures. Additionally, we evaluate vacancy migration rates and energy barriers in an imperfect crystal using direct molecular dynamics (MD) simulations and the string method. Notably, vacancy configurations were absent from the training data. Our results demonstrate the MLFF's capability to capture essential solid-state properties with good agreement to reference data, even for unseen configurations. We further discuss data engineering strategies to enhance the generalizability of MLFFs. The proposed set of benchmark tests and workflow for evaluating MLFF performance in describing perfect and imperfect crystals pave the way for reliable application of MLFFs in studying complex solid-state materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于预测固态特性的图神经网络力场的通用性
机器学习力场(MLFFs)有望为复杂分子系统提供一种计算效率高的非初始模拟替代方法。然而,要将其广泛应用于固体材料研究,确保其在训练数据之外的通用性至关重要。这项工作研究了基于图神经网络(GNN)的 MLFF 在 Lennard-JonesArgon 上训练后描述训练期间未明确包含的固态现象的能力。我们评估了 MLFF 在零温和有限温度下预测完美面心立方(FCC)晶体结构声子态密度(PDOS)的性能。此外,我们还使用直接分子动力学(MD)模拟和弦法评估了不完美晶体中的空位迁移率和能障。值得注意的是,训练数据中不存在空位构型。我们的研究结果表明,MLFF 能够捕捉重要的固态性质,即使是未见的构型,也能与参考数据保持良好的一致性。我们进一步讨论了增强 MLFF 通用性的数据工程策略。我们提出了一套基准测试和工作流程,用于评估 MLFF 在描述完美和不完美晶体方面的性能,为 MLFF 在研究复杂固态材料方面的可靠应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations Conditions aux limites fortement non lin{é}aires pour les {é}quations d'Euler de la dynamique des gaz Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals A novel Mortar Method Integration using Radial Basis Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1