Neural network Approximations for Reaction-Diffusion Equations -- Homogeneous Neumann Boundary Conditions and Long-time Integrations

Eddel Elí Ojeda Avilés, Jae-Hun Jung, Daniel Olmos Liceaga
{"title":"Neural network Approximations for Reaction-Diffusion Equations -- Homogeneous Neumann Boundary Conditions and Long-time Integrations","authors":"Eddel Elí Ojeda Avilés, Jae-Hun Jung, Daniel Olmos Liceaga","doi":"arxiv-2409.08941","DOIUrl":null,"url":null,"abstract":"Reaction-Diffusion systems arise in diverse areas of science and engineering.\nDue to the peculiar characteristics of such equations, analytic solutions are\nusually not available and numerical methods are the main tools for\napproximating the solutions. In the last decade, artificial neural networks\nhave become an active area of development for solving partial differential\nequations. However, several challenges remain unresolved with these methods\nwhen applied to reaction-diffusion equations. In this work, we focus on two\nmain problems. The implementation of homogeneous Neumann boundary conditions\nand long-time integrations. For the homogeneous Neumann boundary conditions, we\nexplore four different neural network methods based on the PINN approach. For\nthe long time integration in Reaction-Diffusion systems, we propose a domain\nsplitting method in time and provide detailed comparisons between different\nimplementations of no-flux boundary conditions. We show that the domain\nsplitting method is crucial in the neural network approach, for long time\nintegration in Reaction-Diffusion systems. We demonstrate numerically that\ndomain splitting is essential for avoiding local minima, and the use of\ndifferent boundary conditions further enhances the splitting technique by\nimproving numerical approximations. To validate the proposed methods, we\nprovide numerical examples for the Diffusion, the Bistable and the Barkley\nequations and provide a detailed discussion and comparisons of the proposed\nmethods.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reaction-Diffusion systems arise in diverse areas of science and engineering. Due to the peculiar characteristics of such equations, analytic solutions are usually not available and numerical methods are the main tools for approximating the solutions. In the last decade, artificial neural networks have become an active area of development for solving partial differential equations. However, several challenges remain unresolved with these methods when applied to reaction-diffusion equations. In this work, we focus on two main problems. The implementation of homogeneous Neumann boundary conditions and long-time integrations. For the homogeneous Neumann boundary conditions, we explore four different neural network methods based on the PINN approach. For the long time integration in Reaction-Diffusion systems, we propose a domain splitting method in time and provide detailed comparisons between different implementations of no-flux boundary conditions. We show that the domain splitting method is crucial in the neural network approach, for long time integration in Reaction-Diffusion systems. We demonstrate numerically that domain splitting is essential for avoiding local minima, and the use of different boundary conditions further enhances the splitting technique by improving numerical approximations. To validate the proposed methods, we provide numerical examples for the Diffusion, the Bistable and the Barkley equations and provide a detailed discussion and comparisons of the proposed methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反应-扩散方程的神经网络近似 -- 均质新曼边界条件和长时间积分
反应-扩散系统出现在科学和工程的各个领域。由于这类方程的特殊性,通常无法获得解析解,而数值方法是近似求解的主要工具。近十年来,人工神经网络已成为求解偏微分方程的一个活跃发展领域。然而,当这些方法应用于反应扩散方程时,仍有一些难题尚未解决。在这项工作中,我们将重点放在双域问题上。均相 Neumann 边界条件和长时间积分的实现。对于均相 Neumann 边界条件,我们基于 PINN 方法探索了四种不同的神经网络方法。对于反应扩散系统中的长时间积分,我们提出了一种时间分域方法,并对无流动边界条件的不同实现方法进行了详细比较。我们的研究表明,在神经网络方法中,域分割方法对于反应扩散系统的长时间积分至关重要。我们用数值方法证明,分域对于避免局部极小值至关重要,而使用不同的边界条件则能通过改进数值近似进一步增强分域技术。为了验证所提出的方法,我们提供了扩散、双稳态和巴克尔方程的数值示例,并对所提出的方法进行了详细讨论和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations Conditions aux limites fortement non lin{é}aires pour les {é}quations d'Euler de la dynamique des gaz Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals A novel Mortar Method Integration using Radial Basis Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1