Estimatable variation neural networks and their application to ODEs and scalar hyperbolic conservation laws

Mária Lukáčová-Medviďová, Simon Schneider
{"title":"Estimatable variation neural networks and their application to ODEs and scalar hyperbolic conservation laws","authors":"Mária Lukáčová-Medviďová, Simon Schneider","doi":"arxiv-2409.08909","DOIUrl":null,"url":null,"abstract":"We introduce estimatable variation neural networks (EVNNs), a class of neural\nnetworks that allow a computationally cheap estimate on the $BV$ norm motivated\nby the space $BMV$ of functions with bounded M-variation. We prove a universal\napproximation theorem for EVNNs and discuss possible implementations. We\nconstruct sequences of loss functionals for ODEs and scalar hyperbolic\nconservation laws for which a vanishing loss leads to convergence. Moreover, we\nshow the existence of sequences of loss minimizing neural networks if the\nsolution is an element of $BMV$. Several numerical test cases illustrate that\nit is possible to use standard techniques to minimize these loss functionals\nfor EVNNs.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce estimatable variation neural networks (EVNNs), a class of neural networks that allow a computationally cheap estimate on the $BV$ norm motivated by the space $BMV$ of functions with bounded M-variation. We prove a universal approximation theorem for EVNNs and discuss possible implementations. We construct sequences of loss functionals for ODEs and scalar hyperbolic conservation laws for which a vanishing loss leads to convergence. Moreover, we show the existence of sequences of loss minimizing neural networks if the solution is an element of $BMV$. Several numerical test cases illustrate that it is possible to use standard techniques to minimize these loss functionals for EVNNs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可估算变异神经网络及其在 ODE 和标量双曲守恒定律中的应用
我们介绍了可估算变异神经网络(EVNNs),这是一类允许对具有有界 M 变异的函数空间 $BMV$ 的 $BV$ 准则进行计算廉价估算的神经网络。我们证明了 EVNN 的通用近似定理,并讨论了可能的实现方法。我们为 ODE 和标量双曲守恒律构建了损失函数序列,对于这些函数,损失消失会导致收敛。此外,我们还展示了如果解是$BMV$的一个元素,损失最小化神经网络序列的存在性。几个数值测试案例说明,可以使用标准技术最小化 EVNN 的这些损失函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations Conditions aux limites fortement non lin{é}aires pour les {é}quations d'Euler de la dynamique des gaz Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals A novel Mortar Method Integration using Radial Basis Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1