An Experimental Study of Competitive Market Behavior Through LLMs

Jingru Jia, Zehua Yuan
{"title":"An Experimental Study of Competitive Market Behavior Through LLMs","authors":"Jingru Jia, Zehua Yuan","doi":"arxiv-2409.08357","DOIUrl":null,"url":null,"abstract":"This study explores the potential of large language models (LLMs) to conduct\nmarket experiments, aiming to understand their capability to comprehend\ncompetitive market dynamics. We model the behavior of market agents in a\ncontrolled experimental setting, assessing their ability to converge toward\ncompetitive equilibria. The results reveal the challenges current LLMs face in\nreplicating the dynamic decision-making processes characteristic of human\ntrading behavior. Unlike humans, LLMs lacked the capacity to achieve market\nequilibrium. The research demonstrates that while LLMs provide a valuable tool\nfor scalable and reproducible market simulations, their current limitations\nnecessitate further advancements to fully capture the complexities of market\nbehavior. Future work that enhances dynamic learning capabilities and\nincorporates elements of behavioral economics could improve the effectiveness\nof LLMs in the economic domain, providing new insights into market dynamics and\naiding in the refinement of economic policies.","PeriodicalId":501273,"journal":{"name":"arXiv - ECON - General Economics","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - General Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the potential of large language models (LLMs) to conduct market experiments, aiming to understand their capability to comprehend competitive market dynamics. We model the behavior of market agents in a controlled experimental setting, assessing their ability to converge toward competitive equilibria. The results reveal the challenges current LLMs face in replicating the dynamic decision-making processes characteristic of human trading behavior. Unlike humans, LLMs lacked the capacity to achieve market equilibrium. The research demonstrates that while LLMs provide a valuable tool for scalable and reproducible market simulations, their current limitations necessitate further advancements to fully capture the complexities of market behavior. Future work that enhances dynamic learning capabilities and incorporates elements of behavioral economics could improve the effectiveness of LLMs in the economic domain, providing new insights into market dynamics and aiding in the refinement of economic policies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过法律硕士对市场竞争行为的实验研究
本研究探讨了大型语言模型(LLM)进行市场实验的潜力,旨在了解其理解竞争性市场动态的能力。我们模拟了受控实验环境中市场主体的行为,评估了它们向竞争性均衡收敛的能力。实验结果揭示了当前 LLM 在复制人类交易行为特有的动态决策过程时所面临的挑战。与人类不同,LLMs 缺乏实现市场均衡的能力。研究表明,尽管 LLM 为可扩展和可重现的市场模拟提供了宝贵的工具,但由于其目前的局限性,有必要进一步改进,以充分捕捉市场行为的复杂性。未来,增强动态学习能力并融入行为经济学元素的工作将提高 LLM 在经济领域的有效性,为市场动态提供新的见解,并帮助完善经济政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
It depends: Varieties of defining growth dependence Experimental Evidence That Conversational Artificial Intelligence Can Steer Consumer Behavior Without Detection Cognitive Hierarchy in Day-to-day Network Flow Dynamics The long-term human capital and health impacts of a pollution reduction programme What Does ChatGPT Make of Historical Stock Returns? Extrapolation and Miscalibration in LLM Stock Return Forecasts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1