ANNZ+: an enhanced photometric redshift estimation algorithm with applications on the PAU Survey

Imdad Mahmud Pathi, John Y. H. Soo, Mao Jie Wee, Sazatul Nadhilah Zakaria, Nur Azwin Ismail, Carlton M. Baugh, Giorgio Manzoni, Enrique Gaztanaga, Francisco J. Castander, Martin Eriksen, Jorge Carretero, Enrique Fernandez, Juan Garcia-Bellido, Ramon Miquel, Cristobal Padilla, Pablo Renard, Eusebio Sanchez, Ignacio Sevilla-Noarbe, Pau Tallada-Crespí
{"title":"ANNZ+: an enhanced photometric redshift estimation algorithm with applications on the PAU Survey","authors":"Imdad Mahmud Pathi, John Y. H. Soo, Mao Jie Wee, Sazatul Nadhilah Zakaria, Nur Azwin Ismail, Carlton M. Baugh, Giorgio Manzoni, Enrique Gaztanaga, Francisco J. Castander, Martin Eriksen, Jorge Carretero, Enrique Fernandez, Juan Garcia-Bellido, Ramon Miquel, Cristobal Padilla, Pablo Renard, Eusebio Sanchez, Ignacio Sevilla-Noarbe, Pau Tallada-Crespí","doi":"arxiv-2409.09981","DOIUrl":null,"url":null,"abstract":"ANNZ is a fast and simple algorithm which utilises artificial neural networks\n(ANNs), it was known as one of the pioneers of machine learning approaches to\nphotometric redshift estimation decades ago. We enhanced the algorithm by\nintroducing new activation functions like tanh, softplus, SiLU, Mish and ReLU\nvariants; its new performance is then vigorously tested on legacy samples like\nthe Luminous Red Galaxy (LRG) and Stripe-82 samples from SDSS, as well as\nmodern galaxy samples like the Physics of the Accelerating Universe Survey\n(PAUS). This work focuses on testing the robustness of activation functions\nwith respect to the choice of ANN architectures, particularly on its depth and\nwidth, in the context of galaxy photometric redshift estimation. Our upgraded\nalgorithm, which we named ANNZ+, shows that the tanh and Leaky ReLU activation\nfunctions provide more consistent and stable results across deeper and wider\narchitectures with > 1 per cent improvement in root-mean-square error\n($\\sigma_{\\textrm{RMS}}$) and 68th percentile error ($\\sigma_{68}$) when tested\non SDSS data sets. While assessing its capabilities in handling high\ndimensional inputs, we achieved an improvement of 11 per cent in\n$\\sigma_{\\textrm{RMS}}$ and 6 per cent in $\\sigma_{68}$ with the tanh\nactivation function when tested on the 40-narrowband PAUS dataset; it even\noutperformed ANNZ2, its supposed successor, by 44 per cent in\n$\\sigma_{\\textrm{RMS}}$. This justifies the effort to upgrade the 20-year-old\nANNZ, allowing it to remain viable and competitive within the photo-z community\ntoday. The updated algorithm ANNZ+ is publicly available at\nhttps://github.com/imdadmpt/ANNzPlus.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"210 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ANNZ is a fast and simple algorithm which utilises artificial neural networks (ANNs), it was known as one of the pioneers of machine learning approaches to photometric redshift estimation decades ago. We enhanced the algorithm by introducing new activation functions like tanh, softplus, SiLU, Mish and ReLU variants; its new performance is then vigorously tested on legacy samples like the Luminous Red Galaxy (LRG) and Stripe-82 samples from SDSS, as well as modern galaxy samples like the Physics of the Accelerating Universe Survey (PAUS). This work focuses on testing the robustness of activation functions with respect to the choice of ANN architectures, particularly on its depth and width, in the context of galaxy photometric redshift estimation. Our upgraded algorithm, which we named ANNZ+, shows that the tanh and Leaky ReLU activation functions provide more consistent and stable results across deeper and wider architectures with > 1 per cent improvement in root-mean-square error ($\sigma_{\textrm{RMS}}$) and 68th percentile error ($\sigma_{68}$) when tested on SDSS data sets. While assessing its capabilities in handling high dimensional inputs, we achieved an improvement of 11 per cent in $\sigma_{\textrm{RMS}}$ and 6 per cent in $\sigma_{68}$ with the tanh activation function when tested on the 40-narrowband PAUS dataset; it even outperformed ANNZ2, its supposed successor, by 44 per cent in $\sigma_{\textrm{RMS}}$. This justifies the effort to upgrade the 20-year-old ANNZ, allowing it to remain viable and competitive within the photo-z community today. The updated algorithm ANNZ+ is publicly available at https://github.com/imdadmpt/ANNzPlus.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANNZ+:增强型测光红移估算算法在 PAU 勘测中的应用
ANNZ是一种利用人工神经网络(ANNs)的快速而简单的算法,几十年前就被称为光度红移估算机器学习方法的先驱之一。我们通过引入新的激活函数(如 tanh、softplus、SiLU、Mish 和 ReLUvariants)来增强该算法;然后在 SDSS 的 Luminous Red Galaxy(LRG)和 Stripe-82 样本以及加速宇宙物理巡天(PAUS)等现代星系样本上对其新性能进行了严格测试。这项工作的重点是在星系测光红移估算的背景下,测试激活函数在选择ANN架构方面的鲁棒性,特别是在深度和宽度方面。我们的升级算法(命名为ANNZ+)显示,在SDSS数据集上测试时,tanh和Leaky ReLU激活函数在更深和更宽的架构上提供了更一致和更稳定的结果,均方根误差($\sigma_\{textrm{RMS}}$)和第68百分位误差($\sigma_{68}$)都提高了>1%。在评估其处理高维输入的能力时,我们在40-窄带PAUS数据集上测试了tanhactivation函数,在$\sigma_{textrm{RMS}}$和$\sigma_{68}$误差方面分别提高了11%和6%;在$\sigma_{textrm{RMS}}$方面,它甚至比其所谓的后继者ANNZ2提高了44%。这就证明我们有理由对已有 20 年历史的 ANNZ 进行升级,使其在当今的光子学界保持活力和竞争力。更新后的算法ANNZ+可在https://github.com/imdadmpt/ANNzPlus。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bright unintended electromagnetic radiation from second-generation Starlink satellites Likelihood reconstruction of radio signals of neutrinos and cosmic rays An evaluation of source-blending impact on the calibration of SKA EoR experiments WALLABY Pilot Survey: HI source-finding with a machine learning framework Black Hole Accretion is all about Sub-Keplerian Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1