Sören Faustmann, Maximilian Kronau, Oliver Fischer
{"title":"Direct tensile tests on steel fiber reinforced concrete with focus on wall effect and fiber orientation","authors":"Sören Faustmann, Maximilian Kronau, Oliver Fischer","doi":"10.1617/s11527-024-02463-2","DOIUrl":null,"url":null,"abstract":"<div><p>Adding steel fibers to concrete essentially improves its post-crack tensile properties. To determine this experimentally, indirect methods, such as flexural tensile tests, are generally used, which allow only indirect conclusions about the material´s tensile properties. In contrast, direct tensile tests provide the desired result immediately, but are difficult to realize. A key parameter affecting the performance of the SRFC is the orientation of the fibers, which is mainly influenced by the manufacturing process. Typically, when the concrete is cast, the steel fibers align with the edges of the formwork. This is commonly called the wall effect. We address these issues, presenting the setup and results of direct tensile tests on bone shaped specimens with three different steel fiber contents. For each content, a series of specimens with a three-sided formwork (i.e. three-sided wall effect and strong influence on the fiber orientation) and a series with cut-out bones (i.e. one-sided wall effect and less influence on fiber orientation) were fabricated and tested. After these tests, the fiber orientation was determined using an opto-analytical method to quantify the influence of the manufacturing methods on the fiber orientation. Comparing the stress-crack-opening relationships shows that the cut specimens at 0.5 mm crack openings have only about 80% of the tensile strength of three-sided formwork specimens. This effect decreases with larger crack openings and vanishes at about 3 mm crack opening. Finally, a new fiber reinforcement index is defined to correlate observed stress in direct tensile tests to fiber content and orientation in direct tensile tests.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"57 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02463-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02463-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adding steel fibers to concrete essentially improves its post-crack tensile properties. To determine this experimentally, indirect methods, such as flexural tensile tests, are generally used, which allow only indirect conclusions about the material´s tensile properties. In contrast, direct tensile tests provide the desired result immediately, but are difficult to realize. A key parameter affecting the performance of the SRFC is the orientation of the fibers, which is mainly influenced by the manufacturing process. Typically, when the concrete is cast, the steel fibers align with the edges of the formwork. This is commonly called the wall effect. We address these issues, presenting the setup and results of direct tensile tests on bone shaped specimens with three different steel fiber contents. For each content, a series of specimens with a three-sided formwork (i.e. three-sided wall effect and strong influence on the fiber orientation) and a series with cut-out bones (i.e. one-sided wall effect and less influence on fiber orientation) were fabricated and tested. After these tests, the fiber orientation was determined using an opto-analytical method to quantify the influence of the manufacturing methods on the fiber orientation. Comparing the stress-crack-opening relationships shows that the cut specimens at 0.5 mm crack openings have only about 80% of the tensile strength of three-sided formwork specimens. This effect decreases with larger crack openings and vanishes at about 3 mm crack opening. Finally, a new fiber reinforcement index is defined to correlate observed stress in direct tensile tests to fiber content and orientation in direct tensile tests.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.