{"title":"Risk analysis of accident-causing evolution in chemical laboratory based on complex network","authors":"Yuanyuan Liu, Mingguang Zhang, Yudie Chang","doi":"10.1177/1748006x241271751","DOIUrl":null,"url":null,"abstract":"Chemical laboratories usually have many high risks from various dangerous chemicals, dangerous devices, and experimental operators involved in the laboratory. Once a severe accident occurs, the accident consequence will significantly impact scientific research innovation and social progress. Aiming at laboratory safety problems, an accident evolution model is established to reveal the critical accident-causing factors and the most likely evolutionary path of accidents in the process of accident evolution. Firstly, the 24 model is used to identify the cause factors of laboratory accidents and the causal relationship between factors. Then, the complex network model of laboratory accident evolution is constructed with accident-causing factors as nodes and causal relationships between factors as edges. Secondly, using the TOPSIS method, four typical complex network characteristic indexes, including degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality, are constructed into a comprehensive evaluation index to reveal the key influencing factors in the accident evolution process. Finally, the fuzzy number is introduced to quantify the uncertainty of the accident evolution path. The most likely evolutionary path is obtained through the Dijkstra and risk entropy theory. Based on the data of 151 laboratory accidents from 2001 to 2022, the accident evolution analysis of chemical laboratories was carried out. The evolution results show that the maximum probability value is the evolution path of fire accidents, and the minimum probability value is the evolution path of electric shock accidents, which accords with the general statistical law of accidents. When applied to the actual laboratory, the safety management level of the laboratory can be effectively improved by controlling the key influencing factors and cutting off the accident evolution path.","PeriodicalId":51266,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006x241271751","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical laboratories usually have many high risks from various dangerous chemicals, dangerous devices, and experimental operators involved in the laboratory. Once a severe accident occurs, the accident consequence will significantly impact scientific research innovation and social progress. Aiming at laboratory safety problems, an accident evolution model is established to reveal the critical accident-causing factors and the most likely evolutionary path of accidents in the process of accident evolution. Firstly, the 24 model is used to identify the cause factors of laboratory accidents and the causal relationship between factors. Then, the complex network model of laboratory accident evolution is constructed with accident-causing factors as nodes and causal relationships between factors as edges. Secondly, using the TOPSIS method, four typical complex network characteristic indexes, including degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality, are constructed into a comprehensive evaluation index to reveal the key influencing factors in the accident evolution process. Finally, the fuzzy number is introduced to quantify the uncertainty of the accident evolution path. The most likely evolutionary path is obtained through the Dijkstra and risk entropy theory. Based on the data of 151 laboratory accidents from 2001 to 2022, the accident evolution analysis of chemical laboratories was carried out. The evolution results show that the maximum probability value is the evolution path of fire accidents, and the minimum probability value is the evolution path of electric shock accidents, which accords with the general statistical law of accidents. When applied to the actual laboratory, the safety management level of the laboratory can be effectively improved by controlling the key influencing factors and cutting off the accident evolution path.
期刊介绍:
The Journal of Risk and Reliability is for researchers and practitioners who are involved in the field of risk analysis and reliability engineering. The remit of the Journal covers concepts, theories, principles, approaches, methods and models for the proper understanding, assessment, characterisation and management of the risk and reliability of engineering systems. The journal welcomes papers which are based on mathematical and probabilistic analysis, simulation and/or optimisation, as well as works highlighting conceptual and managerial issues. Papers that provide perspectives on current practices and methods, and how to improve these, are also welcome