{"title":"Analyzing the operational versatility of advanced IBC solar cells at different temperatures and also with variation in minority carrier lifetimes","authors":"Shiladitya Acharyya, Dibyendu Kumar Ghosh, Dipali Banerjee, Santanu Maity","doi":"10.1007/s10825-024-02232-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, doped and dopant-free carrier-selective passivating contacts have been incorporated in Interdigitated Back Contact solar cells. TCAD simulation study was done to check the performance of an IBC-SHJ (Silicon Hetero-Junction) and IBC-POLO (POLy-silicon on Oxide as seen in TOPCon) cell structures for both <i>p</i> and <i>n</i>-type wafers. The IBC-POLO structure was also repeated with HfO<sub>2</sub> and ZrO<sub>2</sub> over electron transport and hole transport layers, respectively. Simulation study was done by replacing the doped silicon layers with dopant-free Transition Metal Oxides (TMOs). NiO was used as a dopant-free hole-selective contact, whereas Nb<sub>2</sub>O<sub>5</sub> was used a dopant-free electron-selective contact. The fabrication of these materials is non-hazardous and at low temperatures due to which they are preferable over the doped Si layers that require toxic gases like phosphine, diborane, etc. and may also require high temperatures. For example, poly-Si layer applied in IBC-POLO requires an annealing temperature of over 800 °C; similarly, the diffusion of Front Surface Field (FSF) layer in normal IBC cells also requires the same high temperature. Temperature variation was done on these structures to check the dependence of solar PV parameters of each IBC structure on different temperatures. Same variation was checked with minority carrier lifetime of the silicon wafer.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 6","pages":"1170 - 1194"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02232-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, doped and dopant-free carrier-selective passivating contacts have been incorporated in Interdigitated Back Contact solar cells. TCAD simulation study was done to check the performance of an IBC-SHJ (Silicon Hetero-Junction) and IBC-POLO (POLy-silicon on Oxide as seen in TOPCon) cell structures for both p and n-type wafers. The IBC-POLO structure was also repeated with HfO2 and ZrO2 over electron transport and hole transport layers, respectively. Simulation study was done by replacing the doped silicon layers with dopant-free Transition Metal Oxides (TMOs). NiO was used as a dopant-free hole-selective contact, whereas Nb2O5 was used a dopant-free electron-selective contact. The fabrication of these materials is non-hazardous and at low temperatures due to which they are preferable over the doped Si layers that require toxic gases like phosphine, diborane, etc. and may also require high temperatures. For example, poly-Si layer applied in IBC-POLO requires an annealing temperature of over 800 °C; similarly, the diffusion of Front Surface Field (FSF) layer in normal IBC cells also requires the same high temperature. Temperature variation was done on these structures to check the dependence of solar PV parameters of each IBC structure on different temperatures. Same variation was checked with minority carrier lifetime of the silicon wafer.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.