Screening and identification of susceptibility genes for cervical cancer via bioinformatics analysis and the construction of an mitophagy-related genes diagnostic model
{"title":"Screening and identification of susceptibility genes for cervical cancer via bioinformatics analysis and the construction of an mitophagy-related genes diagnostic model","authors":"Zhang Zhang, Fangfang Chen, Xiaoxiao Deng","doi":"10.1007/s00432-024-05952-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>This study aims to utilize bioinformatics methods to systematically screen and identify susceptibility genes for cervical cancer, as well as to construct and validate an mitophagy-related genes (MRGs) diagnostic model. The objective is to increase the understanding of the disease’s pathogenesis and improve early diagnosis and treatment.</p><h3 data-test=\"abstract-sub-heading\">Method</h3><p>We initially collected a large amount of genomic data, including gene expression profile and single nucleotide polymorphism (SNP) data, from the control group and Cervical cancer (CC) patients. Through bioinformatics analysis, which employs methods such as differential gene expression analysis and pathway enrichment analysis, we identified a set of candidate susceptibility genes associated with cervical cancer.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>MRGs were extracted from single-cell RNA sequencing data, and a network graph was constructed on the basis of intercellular interaction data. Furthermore, using machine learning algorithms, we constructed a clinical prognostic model and validated and optimized it via extensive clinical data. Through bioinformatics analysis, we successfully identified a group of genes whose expression significantly differed during the development of CC and revealed the biological pathways in which these genes are involved. Moreover, our constructed clinical prognostic model demonstrated excellent performance in the validation phase, accurately predicting the clinical prognosis of patients.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This study delves into the susceptibility genes of cervical cancer through bioinformatics approaches and successfully builds a reliable clinical prognostic model. This study not only helps uncover potential pathogenic mechanisms of cervical cancer but also provides new directions for early diagnosis and treatment of the disease.</p>","PeriodicalId":15118,"journal":{"name":"Journal of Cancer Research and Clinical Oncology","volume":"40 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Research and Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00432-024-05952-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study aims to utilize bioinformatics methods to systematically screen and identify susceptibility genes for cervical cancer, as well as to construct and validate an mitophagy-related genes (MRGs) diagnostic model. The objective is to increase the understanding of the disease’s pathogenesis and improve early diagnosis and treatment.
Method
We initially collected a large amount of genomic data, including gene expression profile and single nucleotide polymorphism (SNP) data, from the control group and Cervical cancer (CC) patients. Through bioinformatics analysis, which employs methods such as differential gene expression analysis and pathway enrichment analysis, we identified a set of candidate susceptibility genes associated with cervical cancer.
Results
MRGs were extracted from single-cell RNA sequencing data, and a network graph was constructed on the basis of intercellular interaction data. Furthermore, using machine learning algorithms, we constructed a clinical prognostic model and validated and optimized it via extensive clinical data. Through bioinformatics analysis, we successfully identified a group of genes whose expression significantly differed during the development of CC and revealed the biological pathways in which these genes are involved. Moreover, our constructed clinical prognostic model demonstrated excellent performance in the validation phase, accurately predicting the clinical prognosis of patients.
Conclusion
This study delves into the susceptibility genes of cervical cancer through bioinformatics approaches and successfully builds a reliable clinical prognostic model. This study not only helps uncover potential pathogenic mechanisms of cervical cancer but also provides new directions for early diagnosis and treatment of the disease.
期刊介绍:
The "Journal of Cancer Research and Clinical Oncology" publishes significant and up-to-date articles within the fields of experimental and clinical oncology. The journal, which is chiefly devoted to Original papers, also includes Reviews as well as Editorials and Guest editorials on current, controversial topics. The section Letters to the editors provides a forum for a rapid exchange of comments and information concerning previously published papers and topics of current interest. Meeting reports provide current information on the latest results presented at important congresses.
The following fields are covered: carcinogenesis - etiology, mechanisms; molecular biology; recent developments in tumor therapy; general diagnosis; laboratory diagnosis; diagnostic and experimental pathology; oncologic surgery; and epidemiology.