Unconditional Randomization Tests for Interference

Liang Zhong
{"title":"Unconditional Randomization Tests for Interference","authors":"Liang Zhong","doi":"arxiv-2409.09243","DOIUrl":null,"url":null,"abstract":"In social networks or spatial experiments, one unit's outcome often depends\non another's treatment, a phenomenon called interference. Researchers are\ninterested in not only the presence and magnitude of interference but also its\npattern based on factors like distance, neighboring units, and connection\nstrength. However, the non-random nature of these factors and complex\ncorrelations across units pose challenges for inference. This paper introduces\nthe partial null randomization tests (PNRT) framework to address these issues.\nThe proposed method is finite-sample valid and applicable with minimal network\nstructure assumptions, utilizing randomization testing and pairwise\ncomparisons. Unlike existing conditional randomization tests, PNRT avoids the\nneed for conditioning events, making it more straightforward to implement.\nSimulations demonstrate the method's desirable power properties and its\napplicability to general interference scenarios.","PeriodicalId":501293,"journal":{"name":"arXiv - ECON - Econometrics","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In social networks or spatial experiments, one unit's outcome often depends on another's treatment, a phenomenon called interference. Researchers are interested in not only the presence and magnitude of interference but also its pattern based on factors like distance, neighboring units, and connection strength. However, the non-random nature of these factors and complex correlations across units pose challenges for inference. This paper introduces the partial null randomization tests (PNRT) framework to address these issues. The proposed method is finite-sample valid and applicable with minimal network structure assumptions, utilizing randomization testing and pairwise comparisons. Unlike existing conditional randomization tests, PNRT avoids the need for conditioning events, making it more straightforward to implement. Simulations demonstrate the method's desirable power properties and its applicability to general interference scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干扰的无条件随机化检验
在社会网络或空间实验中,一个单元的结果往往取决于另一个单元的处理结果,这种现象被称为干扰。研究人员感兴趣的不仅是干扰的存在和程度,还有基于距离、相邻单位和连接强度等因素的干扰模式。然而,这些因素的非随机性和单位间的复杂相关性给推断带来了挑战。本文提出了部分空随机化检验(PNRT)框架来解决这些问题。所提出的方法利用随机化检验和成对比较,是有限样本有效的,并且适用于最小网络结构假设。与现有的条件随机化检验不同,PNRT 避免了条件事件的需要,使其更易于实现。模拟证明了该方法的理想功率特性及其对一般干扰情景的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple robust two-stage estimation and inference for generalized impulse responses and multi-horizon causality GPT takes the SAT: Tracing changes in Test Difficulty and Math Performance of Students A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality Why you should also use OLS estimation of tail exponents On LASSO Inference for High Dimensional Predictive Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1