Code Vulnerability Detection: A Comparative Analysis of Emerging Large Language Models

Shaznin Sultana, Sadia Afreen, Nasir U. Eisty
{"title":"Code Vulnerability Detection: A Comparative Analysis of Emerging Large Language Models","authors":"Shaznin Sultana, Sadia Afreen, Nasir U. Eisty","doi":"arxiv-2409.10490","DOIUrl":null,"url":null,"abstract":"The growing trend of vulnerability issues in software development as a result\nof a large dependence on open-source projects has received considerable\nattention recently. This paper investigates the effectiveness of Large Language\nModels (LLMs) in identifying vulnerabilities within codebases, with a focus on\nthe latest advancements in LLM technology. Through a comparative analysis, we\nassess the performance of emerging LLMs, specifically Llama, CodeLlama, Gemma,\nand CodeGemma, alongside established state-of-the-art models such as BERT,\nRoBERTa, and GPT-3. Our study aims to shed light on the capabilities of LLMs in\nvulnerability detection, contributing to the enhancement of software security\npractices across diverse open-source repositories. We observe that CodeGemma\nachieves the highest F1-score of 58\\ and a Recall of 87\\, amongst the recent\nadditions of large language models to detect software security vulnerabilities.","PeriodicalId":501278,"journal":{"name":"arXiv - CS - Software Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing trend of vulnerability issues in software development as a result of a large dependence on open-source projects has received considerable attention recently. This paper investigates the effectiveness of Large Language Models (LLMs) in identifying vulnerabilities within codebases, with a focus on the latest advancements in LLM technology. Through a comparative analysis, we assess the performance of emerging LLMs, specifically Llama, CodeLlama, Gemma, and CodeGemma, alongside established state-of-the-art models such as BERT, RoBERTa, and GPT-3. Our study aims to shed light on the capabilities of LLMs in vulnerability detection, contributing to the enhancement of software security practices across diverse open-source repositories. We observe that CodeGemma achieves the highest F1-score of 58\ and a Recall of 87\, amongst the recent additions of large language models to detect software security vulnerabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
代码漏洞检测:新兴大型语言模型的比较分析
由于大量依赖开源项目,软件开发中的漏洞问题呈增长趋势,这一问题最近受到了广泛关注。本文研究了大型语言模型(LLM)在识别代码库中的漏洞方面的有效性,重点关注 LLM 技术的最新进展。通过比较分析,我们评估了新兴 LLM(特别是 Llama、CodeLlama、Gemma 和 CodeGemma)与 BERT、RoBERTa 和 GPT-3 等成熟的最先进模型的性能。我们的研究旨在揭示 LLMs 的漏洞检测能力,从而有助于加强不同开源软件库中的软件安全实践。我们观察到,在最近增加的用于检测软件安全漏洞的大型语言模型中,CodeGemma 的 F1 分数最高,为 58 分,召回率为 87 分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Promise and Peril of Collaborative Code Generation Models: Balancing Effectiveness and Memorization Shannon Entropy is better Feature than Category and Sentiment in User Feedback Processing Motivations, Challenges, Best Practices, and Benefits for Bots and Conversational Agents in Software Engineering: A Multivocal Literature Review A Taxonomy of Self-Admitted Technical Debt in Deep Learning Systems Investigating team maturity in an agile automotive reorganization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1