A Bayesian Interpretation of Adaptive Low-Rank Adaptation

Haolin Chen, Philip N. Garner
{"title":"A Bayesian Interpretation of Adaptive Low-Rank Adaptation","authors":"Haolin Chen, Philip N. Garner","doi":"arxiv-2409.10673","DOIUrl":null,"url":null,"abstract":"Motivated by the sensitivity-based importance score of the adaptive low-rank\nadaptation (AdaLoRA), we utilize more theoretically supported metrics,\nincluding the signal-to-noise ratio (SNR), along with the Improved Variational\nOnline Newton (IVON) optimizer, for adaptive parameter budget allocation. The\nresulting Bayesian counterpart not only has matched or surpassed the\nperformance of using the sensitivity-based importance metric but is also a\nfaster alternative to AdaLoRA with Adam. Our theoretical analysis reveals a\nsignificant connection between the two metrics, providing a Bayesian\nperspective on the efficacy of sensitivity as an importance score. Furthermore,\nour findings suggest that the magnitude, rather than the variance, is the\nprimary indicator of the importance of parameters.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the sensitivity-based importance score of the adaptive low-rank adaptation (AdaLoRA), we utilize more theoretically supported metrics, including the signal-to-noise ratio (SNR), along with the Improved Variational Online Newton (IVON) optimizer, for adaptive parameter budget allocation. The resulting Bayesian counterpart not only has matched or surpassed the performance of using the sensitivity-based importance metric but is also a faster alternative to AdaLoRA with Adam. Our theoretical analysis reveals a significant connection between the two metrics, providing a Bayesian perspective on the efficacy of sensitivity as an importance score. Furthermore, our findings suggest that the magnitude, rather than the variance, is the primary indicator of the importance of parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯对自适应低函数适应的解释
受自适应低秩适应(AdaLoRA)基于灵敏度的重要性评分的启发,我们利用更多理论支持的指标,包括信噪比(SNR),以及改进的变异在线牛顿(IVON)优化器,进行自适应参数预算分配。由此产生的贝叶斯对应算法不仅与使用基于灵敏度的重要性度量的性能相当,甚至超过了后者,而且比使用 Adam 的 AdaLoRA 更快。我们的理论分析揭示了这两个指标之间的重要联系,为灵敏度作为重要性评分的有效性提供了贝叶斯视角。此外,我们的研究结果表明,幅度而非方差是衡量参数重要性的主要指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1