Spatiotemporal Covariance Neural Networks

Andrea Cavallo, Mohammad Sabbaqi, Elvin Isufi
{"title":"Spatiotemporal Covariance Neural Networks","authors":"Andrea Cavallo, Mohammad Sabbaqi, Elvin Isufi","doi":"arxiv-2409.10068","DOIUrl":null,"url":null,"abstract":"Modeling spatiotemporal interactions in multivariate time series is key to\ntheir effective processing, but challenging because of their irregular and\noften unknown structure. Statistical properties of the data provide useful\nbiases to model interdependencies and are leveraged by correlation and\ncovariance-based networks as well as by processing pipelines relying on\nprincipal component analysis (PCA). However, PCA and its temporal extensions\nsuffer instabilities in the covariance eigenvectors when the corresponding\neigenvalues are close to each other, making their application to dynamic and\nstreaming data settings challenging. To address these issues, we exploit the\nanalogy between PCA and graph convolutional filters to introduce the\nSpatioTemporal coVariance Neural Network (STVNN), a relational learning model\nthat operates on the sample covariance matrix of the time series and leverages\njoint spatiotemporal convolutions to model the data. To account for the\nstreaming and non-stationary setting, we consider an online update of the\nparameters and sample covariance matrix. We prove the STVNN is stable to the\nuncertainties introduced by these online estimations, thus improving over\ntemporal PCA-based methods. Experimental results corroborate our theoretical\nfindings and show that STVNN is competitive for multivariate time series\nprocessing, it adapts to changes in the data distribution, and it is orders of\nmagnitude more stable than online temporal PCA.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling spatiotemporal interactions in multivariate time series is key to their effective processing, but challenging because of their irregular and often unknown structure. Statistical properties of the data provide useful biases to model interdependencies and are leveraged by correlation and covariance-based networks as well as by processing pipelines relying on principal component analysis (PCA). However, PCA and its temporal extensions suffer instabilities in the covariance eigenvectors when the corresponding eigenvalues are close to each other, making their application to dynamic and streaming data settings challenging. To address these issues, we exploit the analogy between PCA and graph convolutional filters to introduce the SpatioTemporal coVariance Neural Network (STVNN), a relational learning model that operates on the sample covariance matrix of the time series and leverages joint spatiotemporal convolutions to model the data. To account for the streaming and non-stationary setting, we consider an online update of the parameters and sample covariance matrix. We prove the STVNN is stable to the uncertainties introduced by these online estimations, thus improving over temporal PCA-based methods. Experimental results corroborate our theoretical findings and show that STVNN is competitive for multivariate time series processing, it adapts to changes in the data distribution, and it is orders of magnitude more stable than online temporal PCA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时空协方差神经网络
多变量时间序列中的时空相互作用建模是其有效处理的关键,但由于其结构不规则且往往未知,因此具有挑战性。数据的统计特性为建立相互依存关系模型提供了有用的基础,基于相关性和协方差的网络以及依赖于主要成分分析(PCA)的处理管道都利用了这些特性。然而,当对应的特征值彼此接近时,PCA 及其时间扩展会导致协方差特征向量不稳定,从而使其在动态和流式数据设置中的应用面临挑战。为了解决这些问题,我们利用 PCA 和图卷积滤波器之间的相似性,引入了时空协方差神经网络(STVNN),这是一种关系学习模型,对时间序列的样本协方差矩阵进行操作,并利用联合时空卷积对数据建模。为了考虑流变和非稳态环境,我们考虑了参数和样本协方差矩阵的在线更新。我们证明了 STVNN 对这些在线估计引入的不确定性是稳定的,从而改进了基于 PCA 的超时空方法。实验结果证实了我们的理论发现,并表明 STVNN 在多变量时间序列处理方面具有竞争力,它能适应数据分布的变化,而且比在线时间 PCA 更稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1