Think Twice Before You Act: Improving Inverse Problem Solving With MCMC

Yaxuan Zhu, Zehao Dou, Haoxin Zheng, Yasi Zhang, Ying Nian Wu, Ruiqi Gao
{"title":"Think Twice Before You Act: Improving Inverse Problem Solving With MCMC","authors":"Yaxuan Zhu, Zehao Dou, Haoxin Zheng, Yasi Zhang, Ying Nian Wu, Ruiqi Gao","doi":"arxiv-2409.08551","DOIUrl":null,"url":null,"abstract":"Recent studies demonstrate that diffusion models can serve as a strong prior\nfor solving inverse problems. A prominent example is Diffusion Posterior\nSampling (DPS), which approximates the posterior distribution of data given the\nmeasure using Tweedie's formula. Despite the merits of being versatile in\nsolving various inverse problems without re-training, the performance of DPS is\nhindered by the fact that this posterior approximation can be inaccurate\nespecially for high noise levels. Therefore, we propose \\textbf{D}iffusion\n\\textbf{P}osterior \\textbf{MC}MC (\\textbf{DPMC}), a novel inference algorithm\nbased on Annealed MCMC to solve inverse problems with pretrained diffusion\nmodels. We define a series of intermediate distributions inspired by the\napproximated conditional distributions used by DPS. Through annealed MCMC\nsampling, we encourage the samples to follow each intermediate distribution\nmore closely before moving to the next distribution at a lower noise level, and\ntherefore reduce the accumulated error along the path. We test our algorithm in\nvarious inverse problems, including super resolution, Gaussian deblurring,\nmotion deblurring, inpainting, and phase retrieval. Our algorithm outperforms\nDPS with less number of evaluations across nearly all tasks, and is competitive\namong existing approaches.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent studies demonstrate that diffusion models can serve as a strong prior for solving inverse problems. A prominent example is Diffusion Posterior Sampling (DPS), which approximates the posterior distribution of data given the measure using Tweedie's formula. Despite the merits of being versatile in solving various inverse problems without re-training, the performance of DPS is hindered by the fact that this posterior approximation can be inaccurate especially for high noise levels. Therefore, we propose \textbf{D}iffusion \textbf{P}osterior \textbf{MC}MC (\textbf{DPMC}), a novel inference algorithm based on Annealed MCMC to solve inverse problems with pretrained diffusion models. We define a series of intermediate distributions inspired by the approximated conditional distributions used by DPS. Through annealed MCMC sampling, we encourage the samples to follow each intermediate distribution more closely before moving to the next distribution at a lower noise level, and therefore reduce the accumulated error along the path. We test our algorithm in various inverse problems, including super resolution, Gaussian deblurring, motion deblurring, inpainting, and phase retrieval. Our algorithm outperforms DPS with less number of evaluations across nearly all tasks, and is competitive among existing approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三思而后行:利用 MCMC 改进逆向问题的解决
最近的研究表明,扩散模型可以作为解决逆问题的强大先验。一个突出的例子是扩散后验采样(Diffusion PosteriorSampling,DPS),它利用特威迪公式逼近给定主题数据的后验分布。尽管 DPS 具有无需重新训练即可解决各种逆问题的优点,但它的性能却受到了一个事实的阻碍,即这种后验近似可能不准确,尤其是在高噪声水平下。因此,我们提出了基于 Annealed MCMC 的新型推理算法 \textbf{D}iffusion\textbf{P}osterior \textbf{MC}MC (\textbf{DPMC}),用于解决预训练扩散模型的逆问题。我们受 DPS 使用的近似条件分布的启发,定义了一系列中间分布。通过退火 MCMC 采样,我们鼓励样本在转向噪声水平较低的下一个分布之前,更紧密地跟随每个中间分布,从而减少沿路径的累积误差。我们测试了我们的算法,包括超分辨率、高斯去模糊、运动去模糊、内绘制和相位检索等各种逆问题。在几乎所有任务中,我们的算法都以较少的评估次数超越了 DPS,在现有方法中具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1