Adjoint Matching: Fine-tuning Flow and Diffusion Generative Models with Memoryless Stochastic Optimal Control

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, Ricky T. Q. Chen
{"title":"Adjoint Matching: Fine-tuning Flow and Diffusion Generative Models with Memoryless Stochastic Optimal Control","authors":"Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, Ricky T. Q. Chen","doi":"arxiv-2409.08861","DOIUrl":null,"url":null,"abstract":"Dynamical generative models that produce samples through an iterative\nprocess, such as Flow Matching and denoising diffusion models, have seen\nwidespread use, but there has not been many theoretically-sound methods for\nimproving these models with reward fine-tuning. In this work, we cast reward\nfine-tuning as stochastic optimal control (SOC). Critically, we prove that a\nvery specific memoryless noise schedule must be enforced during fine-tuning, in\norder to account for the dependency between the noise variable and the\ngenerated samples. We also propose a new algorithm named Adjoint Matching which\noutperforms existing SOC algorithms, by casting SOC problems as a regression\nproblem. We find that our approach significantly improves over existing methods\nfor reward fine-tuning, achieving better consistency, realism, and\ngeneralization to unseen human preference reward models, while retaining sample\ndiversity.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamical generative models that produce samples through an iterative process, such as Flow Matching and denoising diffusion models, have seen widespread use, but there has not been many theoretically-sound methods for improving these models with reward fine-tuning. In this work, we cast reward fine-tuning as stochastic optimal control (SOC). Critically, we prove that a very specific memoryless noise schedule must be enforced during fine-tuning, in order to account for the dependency between the noise variable and the generated samples. We also propose a new algorithm named Adjoint Matching which outperforms existing SOC algorithms, by casting SOC problems as a regression problem. We find that our approach significantly improves over existing methods for reward fine-tuning, achieving better consistency, realism, and generalization to unseen human preference reward models, while retaining sample diversity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
邻接匹配:用无记忆随机优化控制微调流动和扩散生成模型
通过迭代过程产生样本的动态生成模型,如流匹配模型和去噪扩散模型,已经得到了广泛应用,但还没有很多理论上合理的方法来通过奖励微调改进这些模型。在这项工作中,我们将奖励微调视为随机最优控制(SOC)。重要的是,我们证明了在微调过程中必须执行非常具体的无记忆噪声计划,以考虑噪声变量与生成样本之间的依赖关系。我们还提出了一种名为 "交点匹配"(Adjithmoint Matching)的新算法,通过将 SOC 问题视为回归问题,该算法优于现有的 SOC 算法。我们发现,与现有的奖励微调方法相比,我们的方法有了明显改善,实现了更好的一致性、真实性和对未知人类偏好奖励模型的泛化,同时保留了采样多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1