Machine Learning on Dynamic Functional Connectivity: Promise, Pitfalls, and Interpretations

Jiaqi Ding, Tingting Dan, Ziquan Wei, Hyuna Cho, Paul J. Laurienti, Won Hwa Kim, Guorong Wu
{"title":"Machine Learning on Dynamic Functional Connectivity: Promise, Pitfalls, and Interpretations","authors":"Jiaqi Ding, Tingting Dan, Ziquan Wei, Hyuna Cho, Paul J. Laurienti, Won Hwa Kim, Guorong Wu","doi":"arxiv-2409.11377","DOIUrl":null,"url":null,"abstract":"An unprecedented amount of existing functional Magnetic Resonance Imaging\n(fMRI) data provides a new opportunity to understand the relationship between\nfunctional fluctuation and human cognition/behavior using a data-driven\napproach. To that end, tremendous efforts have been made in machine learning to\npredict cognitive states from evolving volumetric images of\nblood-oxygen-level-dependent (BOLD) signals. Due to the complex nature of brain\nfunction, however, the evaluation on learning performance and discoveries are\nnot often consistent across current state-of-the-arts (SOTA). By capitalizing\non large-scale existing neuroimaging data (34,887 data samples from six public\ndatabases), we seek to establish a well-founded empirical guideline for\ndesigning deep models for functional neuroimages by linking the methodology\nunderpinning with knowledge from the neuroscience domain. Specifically, we put\nthe spotlight on (1) What is the current SOTA performance in cognitive task\nrecognition and disease diagnosis using fMRI? (2) What are the limitations of\ncurrent deep models? and (3) What is the general guideline for selecting the\nsuitable machine learning backbone for new neuroimaging applications? We have\nconducted a comprehensive evaluation and statistical analysis, in various\nsettings, to answer the above outstanding questions.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An unprecedented amount of existing functional Magnetic Resonance Imaging (fMRI) data provides a new opportunity to understand the relationship between functional fluctuation and human cognition/behavior using a data-driven approach. To that end, tremendous efforts have been made in machine learning to predict cognitive states from evolving volumetric images of blood-oxygen-level-dependent (BOLD) signals. Due to the complex nature of brain function, however, the evaluation on learning performance and discoveries are not often consistent across current state-of-the-arts (SOTA). By capitalizing on large-scale existing neuroimaging data (34,887 data samples from six public databases), we seek to establish a well-founded empirical guideline for designing deep models for functional neuroimages by linking the methodology underpinning with knowledge from the neuroscience domain. Specifically, we put the spotlight on (1) What is the current SOTA performance in cognitive task recognition and disease diagnosis using fMRI? (2) What are the limitations of current deep models? and (3) What is the general guideline for selecting the suitable machine learning backbone for new neuroimaging applications? We have conducted a comprehensive evaluation and statistical analysis, in various settings, to answer the above outstanding questions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态功能连接的机器学习:前景、陷阱与解释
现有的功能磁共振成像(fMRI)数据量空前巨大,这为利用数据驱动方法了解功能波动与人类认知/行为之间的关系提供了新的机会。为此,人们在机器学习方面做出了巨大努力,以便从不断变化的血氧水平依赖性(BOLD)信号容积图像中预测认知状态。然而,由于大脑功能的复杂性,对学习性能和发现的评估往往与当前的技术水平(SOTA)不一致。通过利用现有的大规模神经影像数据(来自六个公共数据库的 34,887 个数据样本),我们试图通过将方法论基础与神经科学领域的知识联系起来,为功能神经影像深度模型的设计建立一个有理有据的经验指南。具体来说,我们将重点放在:(1)目前 SOTA 在使用 fMRI 进行认知任务识别和疾病诊断方面的表现如何?(2) 目前的深度模型有哪些局限性? (3) 为新的神经成像应用选择合适的机器学习骨干的一般准则是什么?为了回答上述悬而未决的问题,我们在不同的设置下进行了全面的评估和统计分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Almost Sure Convergence of Linear Temporal Difference Learning with Arbitrary Features The Impact of Element Ordering on LM Agent Performance Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques Extended Deep Submodular Functions Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1