Chess Rating Estimation from Moves and Clock Times Using a CNN-LSTM

Michael Omori, Prasad Tadepalli
{"title":"Chess Rating Estimation from Moves and Clock Times Using a CNN-LSTM","authors":"Michael Omori, Prasad Tadepalli","doi":"arxiv-2409.11506","DOIUrl":null,"url":null,"abstract":"Current rating systems update ratings incrementally and may not always\naccurately reflect a player's true strength at all times, especially for\nrapidly improving players or very rusty players. To overcome this, we explore a\nmethod to estimate player ratings directly from game moves and clock times. We\ncompiled a benchmark dataset from Lichess, encompassing various time controls\nand including move sequences and clock times. Our model architecture comprises\na CNN to learn positional features, which are then integrated with clock-time\ndata into a bidirectional LSTM, predicting player ratings after each move. The\nmodel achieved an MAE of 182 rating points in the test data. Additionally, we\napplied our model to the 2024 IEEE Big Data Cup Chess Puzzle Difficulty\nCompetition dataset, predicted puzzle ratings and achieved competitive results.\nThis model is the first to use no hand-crafted features to estimate chess\nratings and also the first to output a rating prediction for each move. Our\nmethod highlights the potential of using move-based rating estimation for\nenhancing rating systems and potentially other applications such as cheating\ndetection.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current rating systems update ratings incrementally and may not always accurately reflect a player's true strength at all times, especially for rapidly improving players or very rusty players. To overcome this, we explore a method to estimate player ratings directly from game moves and clock times. We compiled a benchmark dataset from Lichess, encompassing various time controls and including move sequences and clock times. Our model architecture comprises a CNN to learn positional features, which are then integrated with clock-time data into a bidirectional LSTM, predicting player ratings after each move. The model achieved an MAE of 182 rating points in the test data. Additionally, we applied our model to the 2024 IEEE Big Data Cup Chess Puzzle Difficulty Competition dataset, predicted puzzle ratings and achieved competitive results. This model is the first to use no hand-crafted features to estimate chess ratings and also the first to output a rating prediction for each move. Our method highlights the potential of using move-based rating estimation for enhancing rating systems and potentially other applications such as cheating detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 CNN-LSTM 根据走棋和时钟时间估算国际象棋等级分
目前的等级分系统是逐步更新等级分的,可能并不总能准确反映棋手在任何时候的真实实力,特别是对于进步很快的棋手或非常生疏的棋手。为了克服这一问题,我们探索了一种直接从棋谱和时钟时间估算棋手等级分的方法。我们从 Lichess 中编译了一个基准数据集,其中包含各种时间控制,包括移动序列和时钟时间。我们的模型架构包括一个学习位置特征的 CNN,然后将其与时钟时间数据整合到一个双向 LSTM 中,预测每次移动后的棋手评分。该模型在测试数据中取得了 182 个评分点的 MAE。此外,我们还将模型应用于 2024 年 IEEE 大数据杯国际象棋谜题难度竞赛数据集,预测谜题评级并取得了具有竞争力的结果。我们的方法凸显了使用基于棋步的评分估算来提高评分系统以及其他潜在应用(如作弊检测)的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Almost Sure Convergence of Linear Temporal Difference Learning with Arbitrary Features The Impact of Element Ordering on LM Agent Performance Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques Extended Deep Submodular Functions Symmetry-Enriched Learning: A Category-Theoretic Framework for Robust Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1