AdversaFlow: Visual Red Teaming for Large Language Models with Multi-Level Adversarial Flow

Dazhen Deng;Chuhan Zhang;Huawei Zheng;Yuwen Pu;Shouling Ji;Yingcai Wu
{"title":"AdversaFlow: Visual Red Teaming for Large Language Models with Multi-Level Adversarial Flow","authors":"Dazhen Deng;Chuhan Zhang;Huawei Zheng;Yuwen Pu;Shouling Ji;Yingcai Wu","doi":"10.1109/TVCG.2024.3456150","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) are powerful but also raise significant security concerns, particularly regarding the harm they can cause, such as generating fake news that manipulates public opinion on social media and providing responses to unethical activities. Traditional red teaming approaches for identifying AI vulnerabilities rely on manual prompt construction and expertise. This paper introduces AdversaFlow, a novel visual analytics system designed to enhance LLM security against adversarial attacks through human-AI collaboration. AdversaFlow involves adversarial training between a target model and a red model, featuring unique multi-level adversarial flow and fluctuation path visualizations. These features provide insights into adversarial dynamics and LLM robustness, enabling experts to identify and mitigate vulnerabilities effectively. We present quantitative evaluations and case studies validating our system's utility and offering insights for future AI security solutions. Our method can enhance LLM security, supporting downstream scenarios like social media regulation by enabling more effective detection, monitoring, and mitigation of harmful content and behaviors.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 1","pages":"492-502"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10681029/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large Language Models (LLMs) are powerful but also raise significant security concerns, particularly regarding the harm they can cause, such as generating fake news that manipulates public opinion on social media and providing responses to unethical activities. Traditional red teaming approaches for identifying AI vulnerabilities rely on manual prompt construction and expertise. This paper introduces AdversaFlow, a novel visual analytics system designed to enhance LLM security against adversarial attacks through human-AI collaboration. AdversaFlow involves adversarial training between a target model and a red model, featuring unique multi-level adversarial flow and fluctuation path visualizations. These features provide insights into adversarial dynamics and LLM robustness, enabling experts to identify and mitigate vulnerabilities effectively. We present quantitative evaluations and case studies validating our system's utility and offering insights for future AI security solutions. Our method can enhance LLM security, supporting downstream scenarios like social media regulation by enabling more effective detection, monitoring, and mitigation of harmful content and behaviors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AdversaFlow:利用多层次对抗流为大型语言模型提供可视化红队服务
大型语言模型(LLM)功能强大,但也引发了严重的安全问题,尤其是它们可能造成的危害,例如生成假新闻,操纵社交媒体上的舆论,以及对不道德活动做出回应。识别人工智能漏洞的传统红队方法依赖于人工提示构建和专业知识。本文介绍了 AdversaFlow,这是一种新颖的可视化分析系统,旨在通过人机协作提高 LLM 的安全性,抵御对抗性攻击。AdversaFlow 涉及目标模型和红色模型之间的对抗训练,具有独特的多级对抗流和波动路径可视化功能。这些功能有助于深入了解对抗动态和 LLM 的鲁棒性,使专家能够有效地识别和缓解漏洞。我们介绍了定量评估和案例研究,验证了我们系统的实用性,并为未来的人工智能安全解决方案提供了启示。我们的方法可以增强 LLM 的安全性,通过更有效地检测、监控和缓解有害内容和行为,为社交媒体监管等下游场景提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List Errata to “DiffFit: Visually-Guided Differentiable Fitting of Molecule Structures to a Cryo-EM Map” The Census-Stub Graph Invariant Descriptor TimeLighting: Guided Exploration of 2D Temporal Network Projections Preface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1