The largest fragment in self-similar fragmentation processes of positive index

Piotr Dyszewski, Samuel G. G. Johnston, Sandra Palau, Joscha Prochno
{"title":"The largest fragment in self-similar fragmentation processes of positive index","authors":"Piotr Dyszewski, Samuel G. G. Johnston, Sandra Palau, Joscha Prochno","doi":"arxiv-2409.11795","DOIUrl":null,"url":null,"abstract":"Take a self-similar fragmentation process with dislocation measure $\\nu$ and\nindex of self-similarity $\\alpha > 0$. Let $e^{-m_t}$ denote the size of the\nlargest fragment in the system at time $t\\geq 0$. We prove fine results for the\nasymptotics of the stochastic process $(s_{t \\geq 0}$ for a broad class of\ndislocation measures. In the case where the process has finite activity (i.e.\\\n$\\nu$ is a finite measure with total mass $\\lambda>0$), we show that setting\n\\begin{equation*} g(t) :=\\frac{1}{\\alpha}\\left(\\log t - \\log \\log t +\n\\log(\\alpha \\lambda)\\right), \\qquad t\\geq 0, \\end{equation*} we have $\\lim_{t\n\\to \\infty} (m_t - g(t)) = 0$ almost-surely. In the case where the process has\ninfinite activity, we impose the mild regularity condition that the dislocation\nmeasure satisfies \\begin{equation*} \\nu(1-s_1 > \\delta ) = \\delta^{-\\theta}\n\\ell(1/\\delta), \\end{equation*} for some $\\theta \\in (0,1)$ and\n$\\ell:(0,\\infty) \\to (0,\\infty)$ slowly varying at infinity. Under this\nregularity condition, we find that if \\begin{equation*} g(t)\n:=\\frac{1}{\\alpha}\\left( \\log t - (1-\\theta) \\log \\log t - \\log \\ell \\left(\n\\log t ~\\ell\\left( \\log t \\right)^{\\frac{1}{1-\\theta}} \\right) +\nc(\\alpha,\\theta) \\right), \\qquad t\\geq 0, \\end{equation*} then $\\lim_{t \\to\n\\infty} (m_t - g(t)) = 0$ almost-surely. Here $c(\\alpha,\\theta) := \\log \\alpha\n-(1-\\theta)\\log(1-\\theta) - \\log \\Gamma(1-\\theta)$. Our results sharpen\nsignificantly the best prior result on general self-similar fragmentation\nprocesses, due to Bertoin, which states that $m_t = (1+o(1)) \\frac{1}{\\alpha}\n\\log t$.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Take a self-similar fragmentation process with dislocation measure $\nu$ and index of self-similarity $\alpha > 0$. Let $e^{-m_t}$ denote the size of the largest fragment in the system at time $t\geq 0$. We prove fine results for the asymptotics of the stochastic process $(s_{t \geq 0}$ for a broad class of dislocation measures. In the case where the process has finite activity (i.e.\ $\nu$ is a finite measure with total mass $\lambda>0$), we show that setting \begin{equation*} g(t) :=\frac{1}{\alpha}\left(\log t - \log \log t + \log(\alpha \lambda)\right), \qquad t\geq 0, \end{equation*} we have $\lim_{t \to \infty} (m_t - g(t)) = 0$ almost-surely. In the case where the process has infinite activity, we impose the mild regularity condition that the dislocation measure satisfies \begin{equation*} \nu(1-s_1 > \delta ) = \delta^{-\theta} \ell(1/\delta), \end{equation*} for some $\theta \in (0,1)$ and $\ell:(0,\infty) \to (0,\infty)$ slowly varying at infinity. Under this regularity condition, we find that if \begin{equation*} g(t) :=\frac{1}{\alpha}\left( \log t - (1-\theta) \log \log t - \log \ell \left( \log t ~\ell\left( \log t \right)^{\frac{1}{1-\theta}} \right) + c(\alpha,\theta) \right), \qquad t\geq 0, \end{equation*} then $\lim_{t \to \infty} (m_t - g(t)) = 0$ almost-surely. Here $c(\alpha,\theta) := \log \alpha -(1-\theta)\log(1-\theta) - \log \Gamma(1-\theta)$. Our results sharpen significantly the best prior result on general self-similar fragmentation processes, due to Bertoin, which states that $m_t = (1+o(1)) \frac{1}{\alpha} \log t$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正指数自相似破碎过程中的最大碎片
取一个自相似分裂过程,其错位度量为 $\nu$,自相似度指数为 $\alpha > 0$。让 $e^{-m_t}$ 表示时间 $t\geq 0$ 时系统中最大碎片的大小。我们证明了随机过程$(s_{t \geq 0}$对于一类广泛的位移度量的渐近性的精细结果。在过程具有有限活动的情况下(即\nu$是总质量为$\lambda>0$的有限度量)的情况下,我们证明 setting\begin{equation*} g(t) :=frac{1}\{alpha}\left(\log t -\log \log t +\log(\alpha \lambda)\right), \qquad t\geq 0, \end{equation*} 我们几乎可以肯定 $\lim_{t\to \infty} (m_t - g(t)) = 0$。在过程具有无限活动的情况下,我们施加了一个温和的规则性条件,即位错度量满足 \begin{equation*}\nu(1-s_1 > \delta ) = \delta^{-\theta}\ell(1/\delta), \end{equation*} for some $\theta \in (0,1)$ and$ell:(0,\infty) \to (0,\infty)$ slowly varying at infinity.在这个正则条件下,我们会发现如果g(t):=\frac{1}{alpha}\left((log t - (1-\theta) \log \log t - \log \ell \left(\log t ~\ell\left( (log t (right)^{\frac{1}{1-\theta}})\right) +c(\alpha,\theta) \right), \qquad t\geq 0, \end{equation*} 那么 $\lim_{t \to\infty} (m_t - g(t)) = 0$ 几乎是肯定的。这里 $c(\alpha,\theta) := \log \alpha-(1-\theta)\log(1-\theta) - \log \Gamma(1-\theta)$.我们的结果极大地改进了贝托因提出的关于一般自相似分裂过程的最佳先验结果,即 $m_t = (1+o(1)) \frac{1}\{alpha}\log t$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Total disconnectedness and percolation for the supports of super-tree random measures The largest fragment in self-similar fragmentation processes of positive index Local limit of the random degree constrained process The Moran process on a random graph Abelian and stochastic sandpile models on complete bipartite graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1