Tao Wang, Qi Guo, Jian Zhang, Liang Zhang, Kaihui Zhang, Xin Guan, Na Lin, Yongsen Yu, Zhitai Jia and Xutang Tao
{"title":"Size-unlimited sapphire single-crystal fiber growth and the anisotropic & size-dependent mechanical and thermometry performance","authors":"Tao Wang, Qi Guo, Jian Zhang, Liang Zhang, Kaihui Zhang, Xin Guan, Na Lin, Yongsen Yu, Zhitai Jia and Xutang Tao","doi":"10.1039/D4CE00719K","DOIUrl":null,"url":null,"abstract":"<p >Sapphire fibers are becoming a research hotspot for high-temperature sensing in extreme environments due to their high melting point, wide transmission band and superior thermal stability. Nevertheless, the preparation of high-quality, few-mode, large-length sapphire fibers is still a major challenge for further application. Here, we have successfully fabricated high-quality sapphire fibers with a minimum diameter of ∼16 μm and a maximum length of more than 50 m using a state-of-the-art laser-heated pedestal growth system, which, to the best of our knowledge, is the size record for single-crystal fibers. Besides, the anisotropic growth behavior and mechanical properties were investigated in detail, demonstrating that <em>c</em>-oriented sapphire fibers present higher high-temperature tensile strength and superior creep resistance compared with <em>a</em>- and <em>m</em>-oriented sapphire fibers. Further reasearch demonstrates that the tensile strength increases dramatically with decreasing diameter, with the 30 μm-diameter sapphire fibers achieving a tensile strength of more than 8000 MPa and a maximum strain over 20 000 με, both of which are more than twice those of conventional sapphire fibers. Furthermore, a fiber Bragg grating was fabricated within a 30 μm-diameter sapphire fiber for the first time by the femtosecond laser line-by-line scanning method, exhibiting few-mode and stable spectral response in the range of 20–1600 °C with a maximum sensitivity of 40.45 pm °C<small><sup>−1</sup></small> at 1600 °C. This work provides a feasible approach for the preparation of sapphire fibers without size limitation, and demonstrates huge potential of ultra-fine sapphire fibers for applications in harsh environments and strain sensing.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 40","pages":" 5726-5733"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00719k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sapphire fibers are becoming a research hotspot for high-temperature sensing in extreme environments due to their high melting point, wide transmission band and superior thermal stability. Nevertheless, the preparation of high-quality, few-mode, large-length sapphire fibers is still a major challenge for further application. Here, we have successfully fabricated high-quality sapphire fibers with a minimum diameter of ∼16 μm and a maximum length of more than 50 m using a state-of-the-art laser-heated pedestal growth system, which, to the best of our knowledge, is the size record for single-crystal fibers. Besides, the anisotropic growth behavior and mechanical properties were investigated in detail, demonstrating that c-oriented sapphire fibers present higher high-temperature tensile strength and superior creep resistance compared with a- and m-oriented sapphire fibers. Further reasearch demonstrates that the tensile strength increases dramatically with decreasing diameter, with the 30 μm-diameter sapphire fibers achieving a tensile strength of more than 8000 MPa and a maximum strain over 20 000 με, both of which are more than twice those of conventional sapphire fibers. Furthermore, a fiber Bragg grating was fabricated within a 30 μm-diameter sapphire fiber for the first time by the femtosecond laser line-by-line scanning method, exhibiting few-mode and stable spectral response in the range of 20–1600 °C with a maximum sensitivity of 40.45 pm °C−1 at 1600 °C. This work provides a feasible approach for the preparation of sapphire fibers without size limitation, and demonstrates huge potential of ultra-fine sapphire fibers for applications in harsh environments and strain sensing.