Gender Representation and Bias in Indian Civil Service Mock Interviews

Somonnoy Banerjee, Sujan Dutta, Soumyajit Datta, Ashiqur R. KhudaBukhsh
{"title":"Gender Representation and Bias in Indian Civil Service Mock Interviews","authors":"Somonnoy Banerjee, Sujan Dutta, Soumyajit Datta, Ashiqur R. KhudaBukhsh","doi":"arxiv-2409.12194","DOIUrl":null,"url":null,"abstract":"This paper makes three key contributions. First, via a substantial corpus of\n51,278 interview questions sourced from 888 YouTube videos of mock interviews\nof Indian civil service candidates, we demonstrate stark gender bias in the\nbroad nature of questions asked to male and female candidates. Second, our\nexperiments with large language models show a strong presence of gender bias in\nexplanations provided by the LLMs on the gender inference task. Finally, we\npresent a novel dataset of 51,278 interview questions that can inform future\nsocial science studies.","PeriodicalId":501112,"journal":{"name":"arXiv - CS - Computers and Society","volume":"307 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computers and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper makes three key contributions. First, via a substantial corpus of 51,278 interview questions sourced from 888 YouTube videos of mock interviews of Indian civil service candidates, we demonstrate stark gender bias in the broad nature of questions asked to male and female candidates. Second, our experiments with large language models show a strong presence of gender bias in explanations provided by the LLMs on the gender inference task. Finally, we present a novel dataset of 51,278 interview questions that can inform future social science studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印度公务员模拟面试中的性别代表性和偏见
本文有三个主要贡献。首先,我们通过从 888 个 YouTube 模拟印度公务员候选人面试视频中获取的 51 278 个面试问题的大量语料库,证明了向男性和女性候选人提出的问题在广泛性上存在明显的性别偏见。其次,我们使用大型语言模型进行的实验表明,在性别推断任务中,LLMs 提供的解释存在强烈的性别偏见。最后,我们展示了一个包含 51,278 个面试问题的新数据集,该数据集可为未来的社会科学研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Law-based and standards-oriented approach for privacy impact assessment in medical devices: a topic for lawyers, engineers and healthcare practitioners in MedTech Inside Out or Not: Privacy Implications of Emotional Disclosure Idiosyncratic properties of Australian STV election counting Gender Representation and Bias in Indian Civil Service Mock Interviews Reporting Non-Consensual Intimate Media: An Audit Study of Deepfakes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1